

SERTP – 2015 1st Quarter Meeting

First RPSG Meeting & Interactive Training Session

March 26th, 2015 APC Headquarters Birmingham, AL

Process Information

The SERTP process is a transmission planning process.

 Please contact the respective transmission provider for questions related to real-time operations or OATT transmission service.

Purposes & Goals of Meeting

- 2015 SERTP Process Overview
- Form the "RPSG"
 - Regional Planning Stakeholders Group
 - Committee Structure & Requirements
- Economic Planning Studies
 - Review Previous Study Selections
 - Review Requested Sensitivities for 2015
 - RPSG to Select the Five Economic Planning Studies
- Interactive Training Session
 - New TPL Standard
- Miscellaneous Updates
- Next Meeting Activities

SERTP

2015 SERTP Process Overview

Upcoming 2015 SERTP Process

- SERTP 1st Quarter 1st RPSG Meeting & Interactive Training Session
 - **March 2015**
 - Form RPSG
 - Select Five Economic Planning Studies
 - Interactive Training Session
- SERTP 2nd Quarter Preliminary Expansion Plan Meeting

June 2015

- Review Modeling Assumptions
- Discuss Preliminary 10 Year Expansion Plan
- Stakeholder Input & Feedback Regarding the Plan

Upcoming 2015 SERTP Process

SERTP 3rd Quarter — 2nd RPSG Meeting

September 2015

- Discuss the Preliminary Results of the Five Economic Studies
- Stakeholder Input & Feedback Regarding the Study Results
- Discuss Previous Stakeholder Input on the Expansion Plan
- SERTP 4th Quarter Annual Transmission Planning Summit & Input Assumptions

 December 2015
 - Discuss Final Results of the Five Economic Studies
 - Discuss the Regional Transmission Plan
 - Obtain Stakeholder Input on the 2016 Transmission Model Input Assumptions

SERTP

Regional Planning Stakeholder Group

The SERTP Stakeholder Group

- RPSG Regional Planning Stakeholder Group
- Serves Two Primary Purposes
 - The RPSG is charged with determining and proposing up to five (5)
 Economic Planning Studies on an annual basis
 - 2) The RPSG serves as stakeholder representatives for the eight (8) industry sectors in interactions with the SERTP Sponsors

RPSG Committee Structure

- RPSG Sector Representation
 - 1) Transmission Owners / Operators
 - 2) Transmission Service Customers
 - 3) Cooperative Utilities
 - 4) Municipal Utilities
 - 5) Power Marketers
 - 6) Generation Owner / Developers
 - 7) Independent System Operators (ISOs) / Regional Transmission Operators (RTOs)
 - 8) Demand Side Management / Demand Side Response

RPSG Committee Structure

- Sector Representation Requirements
 - Maximum of two (2) representatives per sector
 - Maximum of 16 total sector members
 - A single company, and all of its affiliates, subsidiaries, and parent company, is limited to participating in a single sector

RPSG Committee Structure

Annual Reformation

- Reformed annually at 1st Quarter Meeting
- Sector members elected for a term of approximately one year
- Term ends at start of following year's 1st Quarter SERTP Meeting
- Sector Members shall be elected by the Stakeholders present at the
 1st Quarter Meeting
- Sector Members may serve consecutive, one-year terms if elected
- No limit on the number of terms that a Sector Member may serve

RPSG Committee Structure

- Simple Majority Voting
 - RPSG decision-making that will be recognized by the Transmission
 Provider for purposes of Attachment K shall be those authorized by a simple majority vote by then-current Sector Members
 - Voting by written proxy is allowed

RPSG Formation

• 2014 Sector Representatives

• 2015 Sector Representatives

SERTP

Economic Planning Studies

SERTP Regional Models

- SERTP Sponsors developed 12 coordinated regional models*
- Models include latest transmission planning model information within the SERTP region

No.	Season	Year
1		2016
2		2018
3	CLINANAED	2020
4	SUMMER	2021
5		2023
6		2025
7		2020
8	SHOULDER	2023
9		2025
10	WINTER	2020
11	WINTER	2025
12	LIGHT LOAD	2016

^{*} Available on the secure area of the SERTP website upon satisfying access requirements

Economic Planning Study Process

- SERTP Sponsors identify the transmission requirements needed to move large amounts of power above and beyond existing long-term, firm transmission service commitments
 - Analysis is consistent with NERC standards and company-specific planning criteria
- Models used to perform the analysis incorporate the load forecasts and resource decisions as provided by LSEs
 - Power flow models are made available to stakeholders to perform additional screens or analysis
- Scoping Meeting typically held in April/May

Economic Planning Study Requests

2014 Economic Planning Studies

• 2015 Economic Planning Study Requests

Vote on 2015 Economic Planning Studies

SERTP

Interactive Training Session

New NERC TPL Standard

Main Driver for Change in TPL

- FERC Order 693
 - Sensitivity studies to be carried out
 - Should use event-based contingencies
 - Clarify footnote b
- SDT began work in early 2006

Standard Drafting Team (SDT) Actions

- Merged four standards into one
- Kept table of contingencies / events
 - Category A,B,C contingencies became P0-P7 events
 - Category D contingencies became Extreme Events
- "Raised the Bar" in some areas
- TPL-001-4

New Contingency Categories

Category	Initial Condition	Event ¹	Fault Type ²	BES Level ³	Interruption of Firm Transmission Service Allowed ⁴	Non-Consequential Load Loss Allowed
P0 No Contingency	Normal System	None	N/A	EHV, HV	No	No
P1 Single Contingency	Normal System	Loss of one of the following: 1. Generator 2. Transmission Circuit 3. Transformer ⁵ 4. Shunt Device ⁶	3Ø	EHV, HV	Nos	No ¹²
		5. Single Pole of a DC line	SLG			
P2 Single Contingency	Normal System	Opening of a line section w/o a fault 7	N/A	EHV, HV	No ⁹	No ¹²
		2. Bus Section Fault	SLG	EHV	No ⁹	No
				HV	Yes	Yes
		Internal Breaker Fault ⁸ (non-Bus-tie Breaker)	SLG	EHV	No ⁹	No
				HV	Yes	Yes
		4. Internal Breaker Fault (Bus-tie Breaker) 8	SLG	EHV, HV	Yes	Yes
P3 Multiple Contingency	Loss of generator unit followed by System adjustments ^o	Loss of one of the following: 1. Generator 2. Transmission Circuit 3. Transformer ⁵ 4. Shunt Device ⁶	3Ø	EHV, HV	No ⁹	No ¹²
		5. Single pole of a DC line	SLG			

New Contingency Categories

P4 Multiple Contingency (Fault plus stuck breaker ¹⁰)	Normal System	Loss of multiple elements caused by a stuck breaker ¹⁰ (non-Bus-tie Breaker) attempting to clear a Fault on one of the following:		EHV	No ⁹	No
		 Generator Transmission Circuit Transformer ⁵ Shunt Device ⁶ Bus Section 	SLG	HV	Yes	Yes
		Loss of multiple elements caused by a stuck breaker ¹⁰ (Bus-tie Breaker) attempting to clear a Fault on the associated bus	SLG	EHV, HV	Yes	Yes
P5 Multiple Contingency (Fault plus relay failure to operate)	Normal System	Delayed Fault Clearing due to the failure of a non-redundant relay ¹³ protecting the Faulted element to operate as designed, for one of the following: 1. Generator 2. Transmission Circuit 3. Transformer ⁵ 4. Shunt Device ⁶ 5. Bus Section	SLG	EHV	No ⁹	No
				HV	Yes	Yes
P6 Multiple Contingency (Two overlapping	1. Transmission Circuit 2. Transformer ⁵ pping 3. Shunt Device ⁶	Loss of one of the following: 1. Transmission Circuit 2. Transformer ⁵ 3. Shunt Device ⁶	3Ø	EHV, HV	Yes	Yes
singles)		4. Single pole of a DC line	SLG	EHV, HV	Yes	Yes
P7 Multiple Contingency (Common Structure)	Normal System	The loss of: 1. Any two adjacent (vertically or horizontally) circuits on common structure 11 2. Loss of a bipolar DC line	SLG	EHV, HV	Yes	Yes

TPL-001-4

Requirement R1

Requirements on system models to be used

Requirement R2

Requirements for the annual Planning Assessment

Requirement R3

 Requirements for the Steady State portion of the Planning Assessment

Requirement R4

 Requirements for the Stability portion of the Planning Assessment

TPL-001-4

Requirement R5

- Requires criteria for acceptable:
 - System steady state voltage limits
 - Post- Contingency voltage deviations
 - Transient voltage response

Requirement R6

 Requires criteria or methodology used in the analysis to identify System instability for conditions such as Cascading, voltage instability, or uncontrolled islanding

TPL-001-4

Requirement R7

 PC and TP to identify each entity's individual and joint responsibilities for performing the required studies for the Planning Assessment

Requirement R8

- Requires you to distribute the Planning Assessment to adjacent PC's and TP's
- Respond to comments in 90 days

Additional Work Required

- Requires study assuming a transformer or other equipment which does not have a spare is out (1 year or more lead time)
- Requires coordination with adjacent PCs and TPs to ensure contingencies on adjacent system which impact your system are on your contingency list

Additional Work Required

- Perform single contingency analysis for system including known outages of 6 months duration or longer
- Additional requirements for contingencies related to nonconsequential load
- Requires sensitivity cases to be studied

Additional Work Required

- Contingency analyses shall simulate the removal of all elements that the Protection System and other automatic controls are expected to disconnect
- Trip generators where simulations show generator bus voltages or high side of the GSU voltages are less than known or assumed minimum generator steady state or ride through voltage limitations

Stability

- Requires off-peak and peak studies
 - Peak studies must include effects of induction motor loads.
- Successful and unsuccessful high speed reclosing must be simulated (where utilized)
- Include tripping of Transmission lines and transformers where transient swings cause Protection System operation based on generic or actual relay models

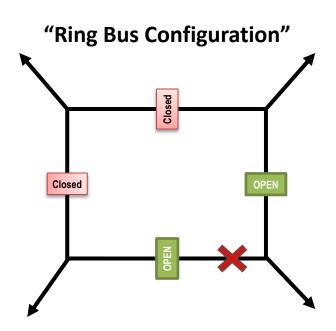
Contingencies

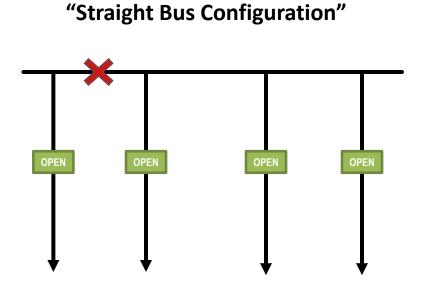
- Treat internal breaker fault as single contingency
 - For >300 kV, no loss of load allowed
- Fault with stuck breaker or fault with relay failure
 - For >300 kV, no loss of load allowed

Status of TPL-001-4

- FERC issued final order approving TPL-001-4 on Oct 17, 2013
- Effective dates
 - R1 and R7 effective 1-1-2015
 - R2, R3, R4, R5, R6, R8 effective 1-1-2016
- For certain "Raising the Bar" events, you have until 1-1-2021 to get improvements in place
 - Can drop Non-Consequential load until then

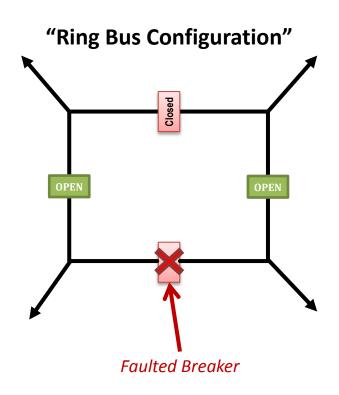
Some "Raising the Bar" Examples

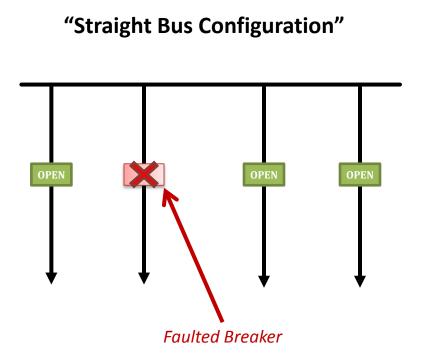

Contingency Examples:


- P2-2 (above 300 kV)
 - EHV "Bus Section Fault" w/o Interruption of Firm Transmission Service or Non-Consequential Load Loss"
- P2-3 (above 300 kV)
 - EHV "Internal Breaker Fault" w/o Interruption of Firm Transmission
 Service or Non-Consequential Load Loss"
- P3-1 through P3-5
 - o "N-G-1"
- P4-1 through P4-5 (above 300 kV)
 - Fault plus "stuck breaker"
- P5 (above 300 kV)
 - Fault plus "delayed fault clearing relay failure"

Some "Raising the Bar" Examples

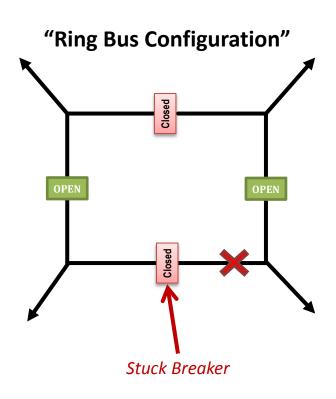
Bus Section Fault

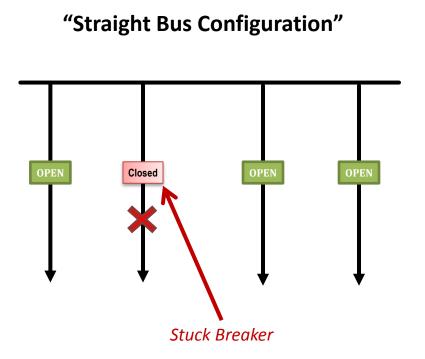




Some "Raising the Bar" Examples

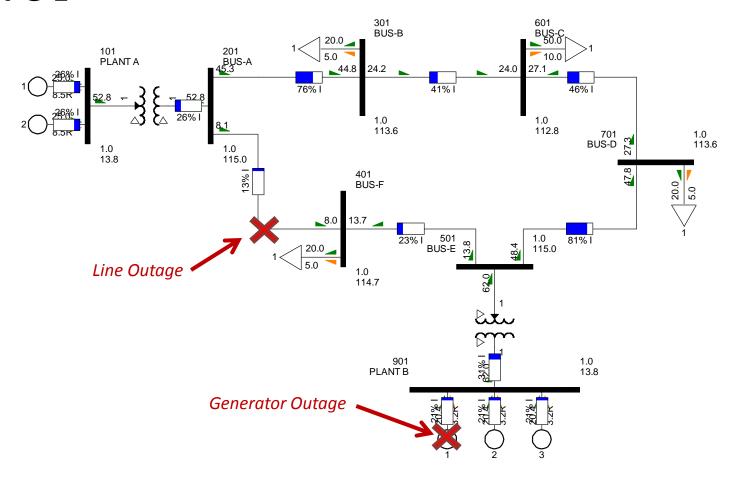
Internal Breaker Fault





Some "Raising the Bar" Examples

Fault Plus Stuck Breaker or Delayed Clearing



Some "Raising the Bar" Examples

N-G-1

Some "Raising the Bar" Examples

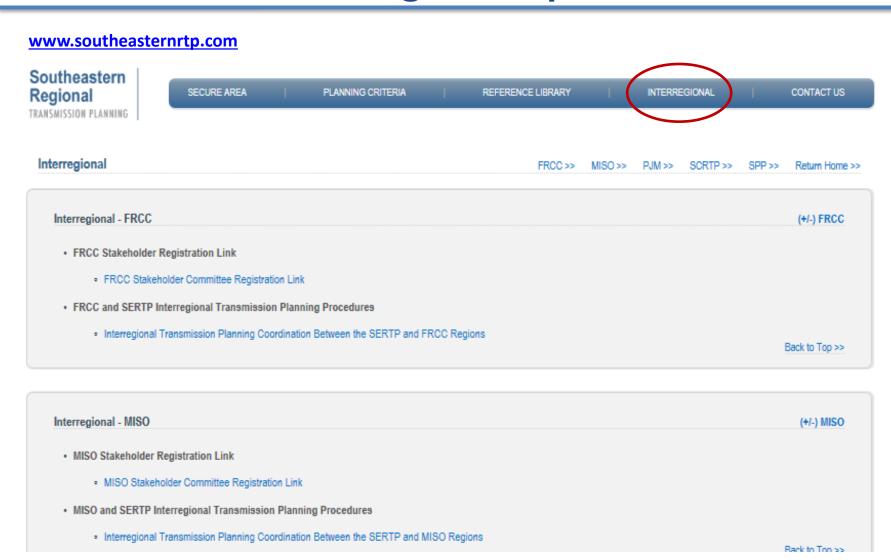
 See the <u>2014 Interactive Training Session</u> for more detailed information on how to outage equipment in PSS/E.

SERTP

Miscellaneous Updates

Order No.1000 Interregional Update

- 1/23/15 Interregional orders issued for four SERTP seams
 - SCRTP, FRCC, PJM, MISO
 - SERTP interregional filings were largely accepted
- 3/24/15 SERTP interregional compliance filings on SERTP seams with SCRTP and FRCC
- Extensions granted for SERTP seams with PJM and MISO
 - PJM: 5/26/15
 - MISO: 6/22/15
- 3/19/15 Interregional order issued for SERTP seam with SPP



Order No.1000 Interregional Update

- SERTP has begun implementing the FERC Order No.1000 interregional requirements
 - Interregional coordination procedures posted
 - Performing initial outreach with seams

Order No.1000 Interregional Update

Order No.1000 Regional Update

Transmission Needs Driven by Public Policy Requirements (PPRs)

- Three (3) stakeholder proposals submitted for the 2015 planning cycle for the following proposed PPRs:
 - 1) Carbon Pollution Emission Guidelines for Existing Electric Utility Generating Units
 - 2) National Primary Ambient Air Quality Standards for S02, National Pollutant
 Discharge Elimination System Requirements for Cooling Water Intake, Cross-State
 Air Pollution Rule, Disposal of Coal Combustion Residuals
 - 3) North Carolina Renewable Energy and Energy Efficiency Portfolio Standard
- None of the stakeholder proposed transmission needs driven by PPRs were identified for further evaluation of potential transmission solutions in the 2015 planning cycle.
- Response posted on the SERTP website.

Next Meeting Activities

- 2015 SERTP 2nd Quarter Meeting
 - Location: TBD
 - Date: June 2015
 - Purpose:
 - Review Modeling Assumptions
 - o Discuss Preliminary 10 Year Expansion Plan
 - Stakeholder Input & Feedback Regarding the Plan

Questions?