

SERTP Southeastern Regional Transmission Planning

Table of Contents

Overview o	f Economic Planning Studies1
Section I:	Study Request 1 Results
Section II:	Study Request 2 Results
Section III:	Study Request 3 Results
Section IV:	Study Request 4 Results
Section V:	Study Request 5 Results

Economic Planning Studies Final Results

Overview of Economic Planning Studies

Executive Summary

The Regional Planning Stakeholder Group ("RPSG") identified five (5) economic planning studies to be evaluated under the Southeastern Regional Transmission Planning ("SERTP") process. The SERTP Sponsors have performed analyses to assess potential constraints on the transmission systems of the participating transmission owners for the stakeholder requested economic planning studies selected by the Regional Planning Stakeholder Group ("RPSG"). The assessments include the identification of potentially limiting facilities, the impact of the transfers on these facilities, and the contingency conditions causing the limitations. The assessments also identify potential transmission enhancements within the footprint of the participating transmission owner's necessary to accommodate the economic planning study requests, planning-level cost estimates, and the projected need-date for projects to accommodate the economic planning study requests. The information contained in this report does not represent a commitment to proceed with the recommended enhancements nor implies that the recommended enhancements could be implemented by the study dates. The assessment cases model the currently projected improvements to the transmission system. However, changes to system conditions and/or the transmission system expansion plans could also impact the results of this study. Planning staff of the participating transmission owners performed the assessments and the results are summarized in this report.

Study Assumptions

The specific assumptions selected for these evaluations were:

- The load levels evaluated were Summer Peak unless otherwise indicated below. Additional load levels were evaluated as appropriate.
- Each request was evaluated for the particular year identified below, as selected by the RPSG
- The following economic planning studies were assessed:

Economic Planning Studies Final Results

1) Santee Cooper Border to PJM Border – 300 MW

- Year: 2020
- Load Level: Summer Peak
- Type of Transfer: Load to Load
- Source: Uniform load scale within Santee Cooper
- Sink: Uniform Load scale within PJM as shown in Table 1 below:

Table 1: PJM Border

PJM Area	Area #	MW Allocation
American Electric Power	205	150
Dominion Virginia Power	345	150
Total		300

2) Southern to Santee Cooper Border – 500 MW

- Year: 2020
- Load Level: Summer Peak
- Type of Transfer: Generation to Load
- **Source:** Generation within Southern
- Sink: Uniform load scale within Santee Cooper

3) TVA to FRCC Border – 500 MW

- Year: 2022
- Load Level: Summer Peak
- Type of Transfer: Generation to Generation
- **Source:** Generation within TVA
- Sink: Generation scale within FRCC as shown in Table 2 below:

Table 2: FRCC Border

FRCC Area	Area #	MW Allocation
Florida Power & Light Company	401	208
Duke Energy Florida	402	68
Jacksonville Electric Authority	406	192
Tallahassee City Electric	415	32
Total		500

4) TVA to PJM Border – 500 MW

- **Year:** 2022
- Load Level: Winter Peak
- Type of Transfer: Generation to Load
- **Source:** Generation within TVA
- Sink: Load scale within PJM as shown in Table 3 below:

Table 3: PJM Border

PJM Area	Area #	MW Allocation
PSE & G	231	167
PECO Energy Company	230	167
Dominion Virginia Power	345	166
Total		500

5) TVA to Duke Energy Carolinas – 300 MW

- Year: 2022
- Load Level: Summer Peak
- Type of Transfer: Generation to Generation
- Source: Generation within TVA
- Sink: Generation within Duke Energy Carolinas

Case Development

• For all evaluations, the **2017** Series Version 2 SERTP Regional Models were used as a starting point load flow cases for the analysis of the Economic Planning Scenarios.

Study Criteria

The study criteria with which results were evaluated included the following reliability elements:

- NERC Reliability Standards
- Individual company criteria (voltage, thermal, stability, and short circuit as applicable)

Methodology

Initially, power flow analyses were performed based on the assumption that thermal limits were the controlling limit for the reliability plan. Voltage, stability, and short circuit studies were performed if circumstances warranted.

Technical Analysis and Study Results

The technical analysis was performed in accordance with the study methodology. Results from the technical analysis were reported throughout the study area to identify transmission elements approaching their limits such that all participating transmission owners and stakeholders would be aware of any potential issues and, as such, suggest appropriate solutions to address the potential issues if necessary. The SERTP reported, at a minimum, results on elements of 115 kV and greater within the participating transmission owners' footprint based on:

- Thermal loadings greater than 90% for facilities that are negatively impacted by the proposed transfers and change by +5% of applicable rating with the addition of the transfer(s)
- Voltages appropriate to each participating transmission owner's planning criteria (with potential solutions if criteria were violated)

Assessment and Problem Identification

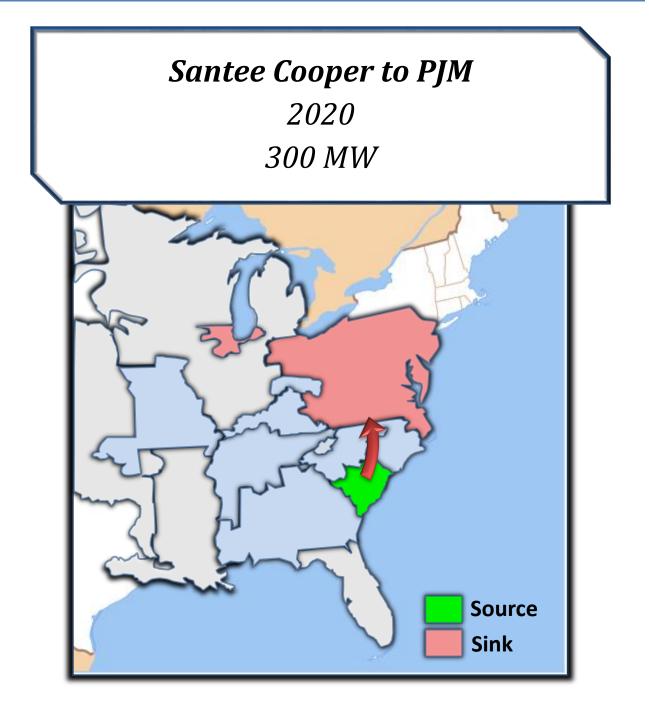
The participating transmission owners ran assessments in order to identify any constraints within the participating transmission owners' footprint as a result of the economic planning study requests. Each participating transmission owner applied their respective reliability criteria for its facilities and any constraints identified were documented and reviewed by each participating transmission owner.

Solution Development

- The participating transmission owners, with input from the stakeholders, will develop potential solution alternatives due to the economic planning studies requested by the RPSG.
- The participating transmission owners will test the effectiveness of the potential solution alternatives using the same cases, methodologies, assumptions and criteria described above.
- The participating transmission owners will develop rough, planning-level cost estimates and in-service dates for the selected solution alternatives.

Report on the Study Results

The participating transmission owners compiled all the study results and prepared a report for review by the stakeholders. The report contains the following:


- A description of the study approach and key assumptions for the Economic Planning Scenarios
- For each economic planning study request, the results of that study including:
 - 1. Limit(s) to the transfer
 - 2. Selected solution alternatives to address the limit(s)
 - 3. Rough, planning-level cost estimates and in-service dates for the selected transmission solution alternatives

Economic Planning Studies Final Results

2017

I. Study Request 1 Results

Economic Planning Studies Final Results

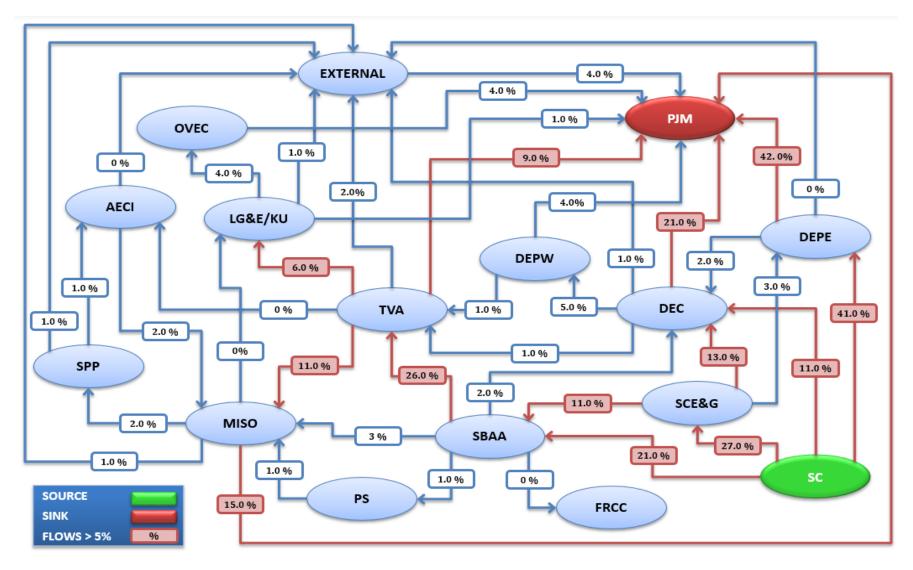

2017

Table I.1.1. Total Cost Identified by the SERTP Sponsors

Balancing Authority	Planning Level Cost Estimate
Associated Electric Cooperative (AECI)	\$0
Duke Carolinas (DEC)	\$0
Duke Progress East (DEPE)	\$0
Duke Progress West (DEPW)	\$0
Louisville Gas & Electric and Kentucky Utilities (LG&E/KU)	\$0
Ohio Valley Electric Cooperative (OVEC)	\$0
PowerSouth (PS)	\$0
Southern (SBAA)	\$0
Tennessee Valley Authority (TVA)	\$0
TOTAL (\$2017)	\$0

Southeastern Regional TRANSMISSION PLANNING Economic Planning Studies Final Results 2017

Diagram I.1.1. Transfer Flow Diagram (% of Total Transfer)

Final Results

Associated Electric Cooperative Balancing Authority (AECI) Results

Study Structure and Assumptions

Transfer Sensitivity	Amount	Source	Sink	Year				
Santee Cooper to PJM	300 MW	Santee Cooper	PJM	2020				
Load Flow Cases								
2017 Series Version 2 SERTP Models: Summer Peak								

Transmission System Impacts

The following tables below identify any constraints attributable to the requested transfer for the contingency and scenario that resulted in the most significant loadings for the conditions studied. Other unit out scenarios or contingencies may also result in constraints to these or other facilities.

Table I.2.1. Pass 0 – Transmission System Impacts with No Enhancements – AECI

The following table identifies significant **AECI** thermal constraints without any enhancements to the transmission system.

			Thermal L	oadings (%)			
AREA	Limiting Element	Rating (MVA)	Without Request	With Request	Contingency	Scenario	Project
AECI	None Identified						

Scenario Explanations:

Table I.2.2. Pass 1 – Potential Future Transmission System Impacts – AECI

The following table depicts thermal loadings of *AECI* transmission facilities that could become potential constraints in future years or with different queuing assumptions, but are not overloaded in the study year with all proposed enhancements to the transmission system.

AREALimiting ElementRating (MVA)Without RequestWith RequestContingencyScenarioProjectAECINone Identified				Thermal Lo	oadings (%)			
AECI None Identified		Limiting Element	U U			Contingency	Scenario	Project
	AECI	None Identified				-		

Scenario Explanations:

Table I.2.3. Potential Solutions for Identified Problems – AECI

The following table lists any potential solutions that were identified to address the attributable constraints based on the assumptions used in this study. It must be noted that changes to the load forecast, and/or changes in the expansion plan could occur, and would impact the results of this study. In addition, the currently projected improvements to the transmission system were modeled in the cases. Changes to system conditions and/or the transmission expansion plans could also impact the results of this study.

ltem	Potential Solution	Estimated Need Date	Planning Level Cost Estimate
	None Required		
	AECI TOTAL (\$2017)		\$0 ⁽¹⁾

Final Results

Duke Carolinas Balancing Authority (DEC) Results

Study Structure and Assumptions

Transfer Sensitivity	Amount	Source	Sink	Year				
Santee Cooper to PJM	300 MW	Santee Cooper	PJM	2020				
Load Flow Cases								
2017 Series Version 2 SERTP Models: Summer Peak								

Transmission System Impacts

The following tables below identify any constraints attributable to the requested transfer for the contingency and scenario that resulted in the most significant loadings for the conditions studied. Other unit out scenarios or contingencies may also result in constraints to these or other facilities.

Table I.3.1. Pass 0 – Transmission System Impacts with No Enhancements – DEC

The following table identifies significant **DEC** thermal constraints without any enhancements to the transmission system.

			Thermal Lo	oadings (%)			
AREA	Limiting Element	Rating (MVA)	Without Request	With Request	Contingency	Scenario	Project
DEC	None Identified						

Scenario Explanations:

Table I.3.2. Pass 1 – Potential Future Transmission System Impacts – DEC

The following table depicts thermal loadings of **DEC** transmission facilities that could become potential constraints in future years or with different queuing assumptions, but are not overloaded in the study year with all proposed enhancements to the transmission system.

		Thermal Lo	oadings (%)			
AREA Limiting Element	Rating (MVA)	Without Request	With Request	Contingency	Scenario	Project
DEC None Identified						

Scenario Explanations:

Table I.3.3. Potential Solutions for Identified Problems – DEC

The following table lists any potential solutions that were identified to address the attributable constraints based on the assumptions used in this study. It must be noted that changes to the load forecast, and/or changes in the expansion plan could occur, and would impact the results of this study. In addition, the currently projected improvements to the transmission system were modeled in the cases. Changes to system conditions and/or the transmission expansion plans could also impact the results of this study.

ltem	Potential Solution	Estimated Need Date	Planning Level Cost Estimate				
	None Required						
	DEC TOTAL (\$2017)						

Final Results

Duke Progress East Balancing Authority (DEPE) Results

Study Structure and Assumptions

Transfer Sensitivity	Amount	Source	Sink	Year							
Santee Cooper to PJM	300 MW	Santee Cooper	PJM	2020							
Load Flow Cases											
2017 Series Version 2 SERTP Models: Summer Peak											

Transmission System Impacts

The following tables below identify any constraints attributable to the requested transfer for the contingency and scenario that resulted in the most significant loadings for the conditions studied. Other unit out scenarios or contingencies may also result in constraints to these or other facilities.

Table I.4.1. Pass 0 – Transmission System Impacts with No Enhancements – DEPE

The following table identifies significant **DEPE** thermal constraints without any enhancements to the transmission system.

			Thermal L	oadings (%)			
AREA	Limiting Element	Rating (MVA)	Without Request	With Request	Contingency	Scenario	Project
DEPE	None Identified				-		

Scenario Explanations:

Table I.4.2. Pass 1 – Potential Future Transmission System Impacts – DEPE

The following table depicts thermal loadings of **DEPE** transmission facilities that could become potential constraints in future years or with different queuing assumptions, but are not overloaded in the study year with all proposed enhancements to the transmission system.

Thermal Loadings (%)		
AREA Limiting Element Rating (MVA) Request Request	Contingency Scenario	Project
DEPE None Identified		

Scenario Explanations:

Table I.4.3. Potential Solutions for Identified Problems – DEPE

The following table lists any potential solutions that were identified to address the attributable constraints based on the assumptions used in this study. It must be noted that changes to the load forecast, and/or changes in the expansion plan could occur, and would impact the results of this study. In addition, the currently projected improvements to the transmission system were modeled in the cases. Changes to system conditions and/or the transmission expansion plans could also impact the results of this study.

ltem	Potential Solution	Estimated Need Date	Planning Level Cost Estimate				
	None Required						
	DEPE TOTAL (\$2017)						

Final Results

Duke Progress West (DEPW) Results

Study Structure and Assumptions

Transfer Sensitivity	Amount	Source	Sink	Year							
Santee Cooper to PJM	300 MW	Santee Cooper	PJM	2020							
Load Flow Cases											
2017 Series Version 2 SERTP Models: Summer Peak											

Transmission System Impacts

The following tables below identify any constraints attributable to the requested transfer for the contingency and scenario that resulted in the most significant loadings for the conditions studied. Other unit out scenarios or contingencies may also result in constraints to these or other facilities.

Table I.5.1. Pass 0 – Transmission System Impacts with No Enhancements – *DEPW*

The following table identifies significant **DEPW** thermal constraints without any enhancements to the transmission system.

			Thermal Lo	oadings (%)			
AREA	Limiting Element	Rating (MVA)	Without Request	With Request	Contingency	Scenario	Project
DEPW	None Identified						

Scenario Explanations:

Table I.5.2. Pass 1 – Potential Future Transmission System Impacts – DEPW

The following table depicts thermal loadings of **DEPW** transmission facilities that could become potential constraints in future years or with different queuing assumptions, but are not overloaded in the study year with all proposed enhancements to the transmission system.

			Thermal L	oadings (%)			
AREA	Limiting Element	Rating (MVA)	Without Request	With Request	Contingency	Scenario	Project
DEPW	None Identified						

Scenario Explanations:

Table 1.5.3. Potential Solutions for Identified Problems – DEPW

The following table lists any potential solutions that were identified to address the attributable constraints based on the assumptions used in this study. It must be noted that changes to the load forecast, and/or changes in the expansion plan could occur, and would impact the results of this study. In addition, the currently projected improvements to the transmission system were modeled in the cases. Changes to system conditions and/or the transmission expansion plans could also impact the results of this study.

ltem	Potential Solution	Estimated Need Date	Planning Level Cost Estimate				
	None Required						
	DEPW TOTAL (\$2017)						

Louisville Gas & Electric and Kentucky Utilities Balancing Authority (LG&E/KU) Results

Study Structure and Assumptions

Transfer Sensitivity	Amount	Source	Sink	Year							
Santee Cooper to PJM	300 MW	Santee Cooper	PJM	2020							
Load Flow Cases											
2017 Series Version 2 SERTP Models: Summer Peak											

Transmission System Impacts

The following tables below identify any constraints attributable to the requested transfer for the contingency and scenario that resulted in the most significant loadings for the conditions studied. Other unit out scenarios or contingencies may also result in constraints to these or other facilities.

Table I.6.1. Pass 0 – Transmission System Impacts with No Enhancements – LG&E/KU

The following table identifies significant *LG&E/KU* thermal constraints without any enhancements to the transmission system.

			Thermal L	oadings (%)			
AREA	Limiting Element	Rating (MVA)	Without Request	With Request	Contingency	Scenario	Project
LG&E/KU	None Identified				-		

Scenario Explanations:

Table I.6.2. Pass 1 – Potential Future Transmission System Impacts – LG&E/KU

The following table depicts thermal loadings of *LG&E/KU* transmission facilities that could become potential constraints in future years or with different queuing assumptions, but are not overloaded in the study year with all proposed enhancements to the transmission system.

AREALimiting ElementRating (MVA)With RequestWith RequestContingencyScenarioProjectLG&E/KUNone Identified					oadings (%)			
LG&E/KU None Identified		Limiting Element				Contingency	Scenario	Project
	LG&E/KU	None Identified				-		

Scenario Explanations:

Table I.6.3. Potential Solutions for Identified Problems – LG&E/KU

The following table lists any potential solutions that were identified to address the attributable constraints based on the assumptions used in this study. It must be noted that changes to the load forecast, and/or changes in the expansion plan could occur, and would impact the results of this study. In addition, the currently projected improvements to the transmission system were modeled in the cases. Changes to system conditions and/or the transmission expansion plans could also impact the results of this study.

ltem	Potential Solution	Estimated Need Date	Planning Level Cost Estimate				
	None Required						
	LG&E/KU TOTAL (\$2017)						

Final Results

Ohio Valley Electric Corporation Balancing Authority (OVEC) Results

Study Structure and Assumptions

Transfer Sensitivity	Amount	Source	Sink	Year								
Santee Cooper to PJM	300 MW	Santee Cooper	PJM	2020								
	Load Flow Cases											
2017 Serie	es Version 2 SERTP	Models: Summ	2017 Series Version 2 SERTP Models: Summer Peak									

Transmission System Impacts

The following tables below identify any constraints attributable to the requested transfer for the contingency and scenario that resulted in the most significant loadings for the conditions studied. Other unit out scenarios or contingencies may also result in constraints to these or other facilities.

Table I.7.1. Pass 0 – Transmission System Impacts with No Enhancements – OVEC

The following table identifies significant **OVEC** thermal constraints without any enhancements to the transmission system.

			Thermal Lo	oadings (%)			
AREA	Limiting Element	Rating (MVA)	Without Request	With Request	Contingency	Scenario	Project
OVEC	None Identified				-		

Scenario Explanations:

Table I.7.2. Pass 1 – Potential Future Transmission System Impacts – OVEC

The following table depicts thermal loadings of **OVEC** transmission facilities that could become potential constraints in future years or with different queuing assumptions, but are not overloaded in the study year with all proposed enhancements to the transmission system.

			Thermal Lo	oadings (%)			
AREA	Limiting Element	Rating (MVA)	Without Request	With Request	Contingency	Scenario	Project
OVEC	None Identified				-		

Scenario Explanations:

Table 1.7.3. Potential Solutions for Identified Problems – OVEC

The following table lists any potential solutions that were identified to address the attributable constraints based on the assumptions used in this study. It must be noted that changes to the load forecast, and/or changes in the expansion plan could occur, and would impact the results of this study. In addition, the currently projected improvements to the transmission system were modeled in the cases. Changes to system conditions and/or the transmission expansion plans could also impact the results of this study.

ltem	Potential Solution	Estimated Need Date	Planning Level Cost Estimate				
	None Required						
	OVEC TOTAL (\$2017)						

Final Results

PowerSouth Balancing Authority (PS) Results

Study Structure and Assumptions

Transfer Sensitivity	Amount	Source	Sink	Year							
Santee Cooper to PJM	300 MW	Santee Cooper	PJM	2020							
	Load Flow Cases										
2017 Serie	2017 Series Version 2 SERTP Models: Summer Peak										

Transmission System Impacts

The following tables below identify any constraints attributable to the requested transfer for the contingency and scenario that resulted in the most significant loadings for the conditions studied. Other unit out scenarios or contingencies may also result in constraints to these or other facilities.

Table I.8.1. Pass 0 – Transmission System Impacts with No Enhancements – PS

The following table identifies significant **PS** thermal constraints without any enhancements to the transmission system.

			Thermal Lo	oadings (%)			
AREA	Limiting Element	Rating (MVA)	Without Request	With Request	Contingency	Scenario	Project
PS	None Identified						

Scenario Explanations:

Table I.8.2. Pass 1 – Potential Future Transmission System Impacts – PS

The following table depicts thermal loadings of **PS** transmission facilities that could become potential constraints in future years or with different queuing assumptions, but are not overloaded in the study year with all proposed enhancements to the transmission system.

			Thermal L	oadings (%)			
AREA	Limiting Element	Rating (MVA)	Without Request	With Request	Contingency	Scenario	Project
PS	None Identified				-		

Scenario Explanations:

Table I.8.3. Potential Solutions for Identified Problems – PS

The following table lists any potential solutions that were identified to address the attributable constraints based on the assumptions used in this study. It must be noted that changes to the load forecast, and/or changes in the expansion plan could occur, and would impact the results of this study. In addition, the currently projected improvements to the transmission system were modeled in the cases. Changes to system conditions and/or the transmission expansion plans could also impact the results of this study.

ltem	Potential Solution	Estimated Need Date	Planning Level Cost Estimate				
	None Required						
	PS TOTAL (\$2017)						

Final Results

Southern Balancing Authority (SBAA) Results

Study Structure and Assumptions

Transfer Sensitivity	Amount	Source	Sink	Year							
Santee Cooper to PJM	300 MW	Santee Cooper	PJM	2020							
	Load Flow Cases										
2017 Serie	es Version 2 SERTP	Models: Summ	er Peak								

Transmission System Impacts

The following tables below identify any constraints attributable to the requested transfer for the contingency and scenario that resulted in the most significant loadings for the conditions studied. Other unit out scenarios or contingencies may also result in constraints to these or other facilities.

Table I.9.1. Pass 0 – Transmission System Impacts with No Enhancements – SBAA

The following table identifies significant **SBAA** thermal constraints without any enhancements to the transmission system.

Detter		Thermal Lo	oadings (%)				
AREA	Limiting Element	Rating (MVA)	Without Request	With Request	Contingency	Scenario	Project
SBAA	None Identified	_	_	-	-	-	—

Scenario Explanations:

Table I.9.2. Pass 1 – Potential Future Transmission System Impacts – SBAA

The following table depicts thermal loadings of **SBAA** transmission facilities that could become potential constraints in future years or with different queuing assumptions, but are not overloaded in the study year with all proposed enhancements to the transmission system.

			Thermal Lo	oadings (%)			
AREA	Limiting Element	Rating (MVA)	Without Request	With Request	Contingency	Scenario	Project
SBAA	None Identified						

Scenario Explanations:

Table I.9.3. Potential Solutions for Identified Problems – SBAA

The following table lists any potential solutions that were identified to address the attributable constraints based on the assumptions used in this study. It must be noted that changes to the load forecast, and/or changes in the expansion plan could occur, and would impact the results of this study. In addition, the currently projected improvements to the transmission system were modeled in the cases. Changes to system conditions and/or the transmission expansion plans could also impact the results of this study.

Item	Potential Solution	Estimated Need Date	Planning Level Cost Estimate		
	None Required				
	SBAA TOTAL (\$2017)		\$0 ⁽¹⁾		

Final Results

Tennessee Valley Authority Balancing Authority (TVA) Results

Study Structure and Assumptions

Transfer Sensitivity	Amount	Source	Sink	Year				
Santee Cooper to PJM	300 MW	Santee Cooper	PJM	2020				
Load Flow Cases								
2017 Series Version 2 SERTP Models: Summer Peak								

Transmission System Impacts

The following tables below identify any constraints attributable to the requested transfer for the contingency and scenario that resulted in the most significant loadings for the conditions studied. Other unit out scenarios or contingencies may also result in constraints to these or other facilities.

Table I.10.1. Pass 0 – Transmission System Impacts with No Enhancements – TVA

The following table identifies significant *TVA* thermal constraints without any enhancements to the transmission system.

		Thermal Loadings (%)					
AREA	Limiting Element	Rating (MVA)	Without Request	With Request	Contingency	Scenario	Project
TVA	None Identified	-	_	-	-	_	—

Scenario Explanations:

Table I.10.2. Pass 1 – Potential Future Transmission System Impacts – TVA

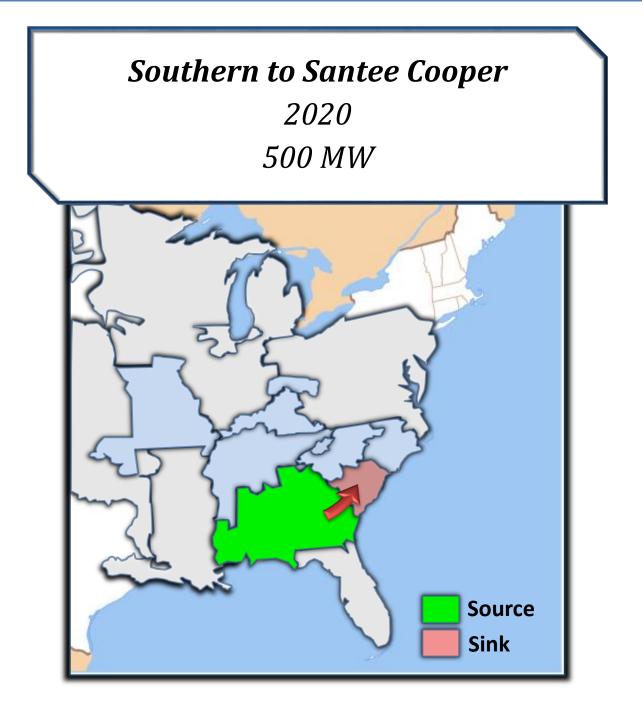
The following table depicts thermal loadings of **TVA** transmission facilities that could become potential constraints in future years or with different queuing assumptions, but are not overloaded in the study year with all proposed enhancements to the transmission system.

Thermal Loadings (%)							
AREA	Limiting Element	Rating (MVA)	Without Request	With Request	Contingency	Scenario	Project
TVA	None Identified				-		

Scenario Explanations:

Table I.10.3. Potential Solutions for Identified Problems – TVA

The following table lists any potential solutions that were identified to address the attributable constraints based on the assumptions used in this study. It must be noted that changes to the load forecast, and/or changes in the expansion plan could occur, and would impact the results of this study. In addition, the currently projected improvements to the transmission system were modeled in the cases. Changes to system conditions and/or the transmission expansion plans could also impact the results of this study.


ltem	Potential Solution	Estimated Need Date	Planning Level Cost Estimate				
	None Required						
	TVA TOTAL (\$2017)						

Economic Planning Studies <u>Final Results</u>

2017

II. Study Request 2 Results

Economic Planning Studies Final Results

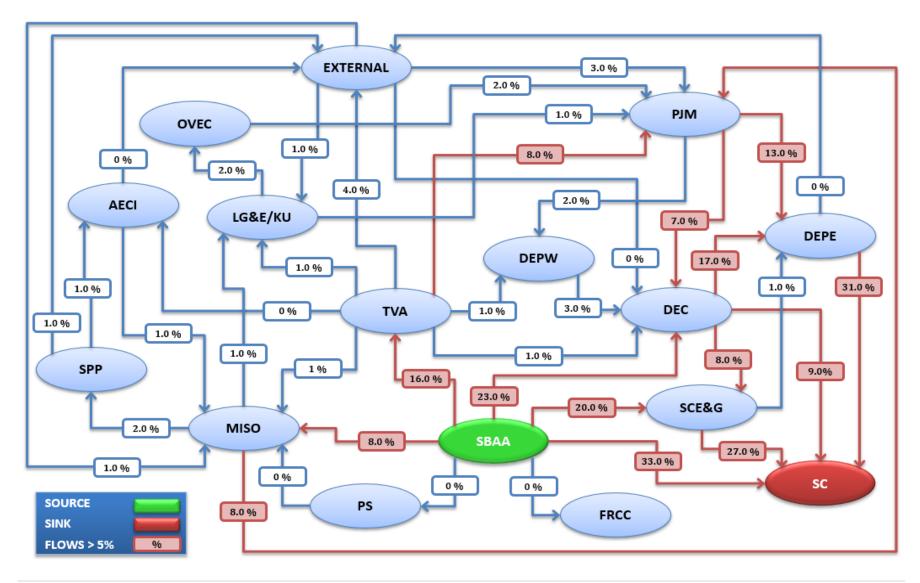

2017

Table II.1.1. Total Cost Identified by the SERTP Sponsors

Balancing Authority	Planning Level Cost Estimate
Associated Electric Cooperative (AECI)	\$0
Duke Carolinas (DEC)	\$0
Duke Progress East (DEPE)	\$0
Duke Progress West (DEPW)	\$0
Louisville Gas & Electric and Kentucky Utilities (LG&E/KU)	\$0
Ohio Valley Electric Cooperative (OVEC)	\$0
PowerSouth (PS)	\$0
Southern (SBAA)	\$0
Tennessee Valley Authority (TVA)	\$0
TOTAL (\$2017)	\$0

Southeastern
Regional
TRANSMISSION PLANNINGEconomic Planning Studies
Final Results2017

Diagram II.1.1. Transfer Flow Diagram (% of Total Transfer)

Final Results

Associated Electric Cooperative Balancing Authority (AECI) Results

Study Structure and Assumptions

Transfer Sensitivity	Amount	Source	Sink	Year					
Southern to Santee Cooper	500 MW	Southern	Santee Cooper	2020					
Load Flow Cases									
2017 Serie	s Version 2 SERTP	Models: Summ	er Peak						

Transmission System Impacts

The following tables below identify any constraints attributable to the requested transfer for the contingency and scenario that resulted in the most significant loadings for the conditions studied. Other unit out scenarios or contingencies may also result in constraints to these or other facilities.

Table II.2.1. Pass 0 – Transmission System Impacts with No Enhancements – AECI

The following table identifies significant *AECI* thermal constraints without any enhancements to the transmission system.

	Thermal Loadings (%)		oadings (%)				
AREA	Limiting Element	Rating (MVA)	Without Request	With Request	Contingency	Scenario	Project
AECI	None Identified	-		-	-	-	-

Scenario Explanations:

Table II.2.2. Pass 1 – Potential Future Transmission System Impacts – AECI

The following table depicts thermal loadings of **AECI** transmission facilities that could become potential constraints in future years or with different queuing assumptions, but are not overloaded in the study year with all proposed enhancements to the transmission system.

(MVA) Request Request	Thermal Loadings (%)						
	AREA	Limiting Element	-		Contingency	Scenario	Project
AECI None Identified	AECI	None Identified		 			

Scenario Explanations:

Table II.2.3. Potential Solutions for Identified Problems – AECI

The following table lists any potential solutions that were identified to address the attributable constraints based on the assumptions used in this study. It must be noted that changes to the load forecast, and/or changes in the expansion plan could occur, and would impact the results of this study. In addition, the currently projected improvements to the transmission system were modeled in the cases. Changes to system conditions and/or the transmission expansion plans could also impact the results of this study.

Item	Potential Solution	Estimated Need Date	Planning Level Cost Estimate				
	None Required						
	AECI TOTAL (\$2017)						

Final Results

Duke Carolinas Balancing Authority (DEC) Results

Study Structure and Assumptions

Transfer Sensitivity	Amount	Source	Sink	Year					
Southern to Santee Cooper	500 MW	Southern	Santee Cooper	2020					
Load Flow Cases									
2017 Serie	2017 Series Version 2 SERTP Models: Summer Peak								

Transmission System Impacts

The following tables below identify any constraints attributable to the requested transfer for the contingency and scenario that resulted in the most significant loadings for the conditions studied. Other unit out scenarios or contingencies may also result in constraints to these or other facilities.

Table II.3.1. Pass 0 – Transmission System Impacts with No Enhancements – DEC

The following table identifies significant **DEC** thermal constraints without any enhancements to the transmission system.

	Therr		Thermal Loadings							
А	REA	Limiting Element	Rating (MVA)	Without Request	With Request	Contingency	Scenario	Project		
C	DEC	None Identified	-	-	-	-	-	-		

Scenario Explanations:

Table II.3.2. Pass 1 – Potential Future Transmission System Impacts – DEC

The following table depicts thermal loadings of **DEC** transmission facilities that could become potential constraints in future years or with different queuing assumptions, but are not overloaded in the study year with all proposed enhancements to the transmission system.

			Thermal Loadings (%)				
AREA	Limiting Element	Rating (MVA)	Without Request	With Request	Contingency	Scenario	Project
DEC	None Identified				-		

Scenario Explanations:

Table II.3.3. Potential Solutions for Identified Problems – DEC

The following table lists any potential solutions that were identified to address the attributable constraints based on the assumptions used in this study. It must be noted that changes to the load forecast, and/or changes in the expansion plan could occur, and would impact the results of this study. In addition, the currently projected improvements to the transmission system were modeled in the cases. Changes to system conditions and/or the transmission expansion plans could also impact the results of this study.

ltem	Potential Solution	Estimated Need Date	Planning Level Cost Estimate				
	None Required						
	DEC TOTAL (\$2017)						

Final Results

Duke Progress East Balancing Authority (DEPE) Results

Study Structure and Assumptions

Transfer Sensitivity	Amount	Source	Sink	Year					
Southern to Santee Cooper	500 MW	Southern	Santee Cooper	2020					
Load Flow Cases									
2017 Serie	2017 Series Version 2 SERTP Models: Summer Peak								

Transmission System Impacts

The following tables below identify any constraints attributable to the requested transfer for the contingency and scenario that resulted in the most significant loadings for the conditions studied. Other unit out scenarios or contingencies may also result in constraints to these or other facilities.

Table II.4.1. Pass 0 – Transmission System Impacts with No Enhancements – DEPE

The following table identifies significant **DEPE** thermal constraints without any enhancements to the transmission system.

		Thermal Loadings (%)					
AREA	Limiting Element	Rating (MVA)	Without Request	With Request	Contingency	Scenario	Project
DEPE	None Identified	-	-	-	-	-	-

Scenario Explanations:

Table II.4.2. Pass 1 – Potential Future Transmission System Impacts – DEPE

The following table depicts thermal loadings of **DEPE** transmission facilities that could become potential constraints in future years or with different queuing assumptions, but are not overloaded in the study year with all proposed enhancements to the transmission system.

			Thermal Lo	oadings (%)			
AREA	Limiting Element	Rating (MVA)	Without Request	With Request	Contingency	Scenario	Project
DEPE	None Identified						

Scenario Explanations:

Economic Planning Studies Final Results

Table II.4.3. Potential Solutions for Identified Problems – DEPE

The following table lists any potential solutions that were identified to address the attributable constraints based on the assumptions used in this study. It must be noted that changes to the load forecast, and/or changes in the expansion plan could occur, and would impact the results of this study. In addition, the currently projected improvements to the transmission system were modeled in the cases. Changes to system conditions and/or the transmission expansion plans could also impact the results of this study.

Item	Potential Solution	Estimated Need Date	Planning Level Cost Estimate				
	None Required						
	DEPE TOTAL (\$2017)						

Final Results

Duke Progress West (DEPW) Results

Study Structure and Assumptions

Transfer Sensitivity	Transfer Sensitivity Amount Source Sink Year									
Southern to Santee Cooper 500 MW Southern Santee Cooper 2020										
Load Flow Cases										
2017 Series Version 2 SERTP Models: Summer Peak										

Transmission System Impacts

The following tables below identify any constraints attributable to the requested transfer for the contingency and scenario that resulted in the most significant loadings for the conditions studied. Other unit out scenarios or contingencies may also result in constraints to these or other facilities.

Table II.5.1. Pass 0 – Transmission System Impacts with No Enhancements – DEPW

The following table identifies significant *DEPW* thermal constraints without any enhancements to the transmission system.

			Thermal L	oadings (%)			
AREA	Limiting Element	Rating (MVA)	Without Request	With Request	Contingency	Scenario	Project
DEPW	None Identified	-	-	-	-	-	-

Scenario Explanations:

Table II.5.2. Pass 1 – Potential Future Transmission System Impacts – DEPW

The following table depicts thermal loadings of **DEPW** transmission facilities that could become potential constraints in future years or with different queuing assumptions, but are not overloaded in the study year with all proposed enhancements to the transmission system.

			Thermal Lo	oadings (%)			
AREA	Limiting Element	Rating (MVA)	Without Request	With Request	Contingency	Scenario	Project
DEPW	None Identified						

Scenario Explanations:

Table II.5.3. Potential Solutions for Identified Problems – DEPW

The following table lists any potential solutions that were identified to address the attributable constraints based on the assumptions used in this study. It must be noted that changes to the load forecast, and/or changes in the expansion plan could occur, and would impact the results of this study. In addition, the currently projected improvements to the transmission system were modeled in the cases. Changes to system conditions and/or the transmission expansion plans could also impact the results of this study.

Item	Potential Solution	Estimated Need Date	Planning Level Cost Estimate				
	None Required		\$0				
	DEPW TOTAL (\$2017)						

Louisville Gas & Electric and Kentucky Utilities Balancing Authority (LG&E/KU) Results

Study Structure and Assumptions

Transfer Sensitivity	Transfer SensitivityAmountSourceSinkYear									
Southern to Santee Cooper 500 MW Southern Santee Cooper 2020										
Load Flow Cases										
2017 Series Version 2 SERTP Models: Summer Peak										

Transmission System Impacts

The following tables below identify any constraints attributable to the requested transfer for the contingency and scenario that resulted in the most significant loadings for the conditions studied. Other unit out scenarios or contingencies may also result in constraints to these or other facilities.

Table II.6.1. Pass 0 – Transmission System Impacts with No Enhancements – LG&E/KU

The following table identifies significant *LG&E/KU* thermal constraints without any enhancements to the transmission system.

			Thermal Lo	oadings (%)			
AREA	Limiting Element	Rating (MVA)	Without Request	With Request	Contingency	Scenario	Project
LG&E/KU	None Identified	-	_	-	-	-	-

Scenario Explanations:

Table II.6.2. Pass 1 – Potential Future Transmission System Impacts – LG&E/KU

The following table depicts thermal loadings of *LG&E/KU* transmission facilities that could become potential constraints in future years or with different queuing assumptions, but are not overloaded in the study year with all proposed enhancements to the transmission system.

AREALimiting ElementRating (MVA)Without RequestWith RequestContingencyScenarioProjectLG&E/KUNone Identified				Thermal L	oadings (%)			
LG&E/KU None Identified	AREA	Limiting Element	•			Contingency	Scenario	Project
	LG&E/KU	None Identified				-		

Scenario Explanations:

Table II.6.3. Potential Solutions for Identified Problems – LG&E/KU

The following table lists any potential solutions that were identified to address the attributable constraints based on the assumptions used in this study. It must be noted that changes to the load forecast, and/or changes in the expansion plan could occur, and would impact the results of this study. In addition, the currently projected improvements to the transmission system were modeled in the cases. Changes to system conditions and/or the transmission expansion plans could also impact the results of this study.

ltem	Potential Solution	Estimated Need Date	Planning Level Cost Estimate				
	None Required						
	LG&E/KU TOTAL (\$2017)						

Final Results

Ohio Valley Electric Corporation Balancing Authority (OVEC) Results

Study Structure and Assumptions

Transfer Sensitivity	Transfer Sensitivity Amount Source Sink Year									
Southern to Santee Cooper 500 MW Southern Santee Cooper 2020										
Load Flow Cases										
2017 Series Version 2 SERTP Models: Summer Peak										

Transmission System Impacts

The following tables below identify any constraints attributable to the requested transfer for the contingency and scenario that resulted in the most significant loadings for the conditions studied. Other unit out scenarios or contingencies may also result in constraints to these or other facilities.

Table II.7.1. Pass 0 – Transmission System Impacts with No Enhancements – OVEC

The following table identifies significant **OVEC** thermal constraints without any enhancements to the transmission system.

		Thermal Lo	oadings (%)				
AREA	Limiting Element	Rating (MVA)	Without Request	With Request	Contingency	Scenario	Project
OVEC	None Identified	-	-	-	-	-	-

Scenario Explanations:

Table II.7.2. Pass 1 – Potential Future Transmission System Impacts – OVEC

The following table depicts thermal loadings of **OVEC** transmission facilities that could become potential constraints in future years or with different queuing assumptions, but are not overloaded in the study year with all proposed enhancements to the transmission system.

			Thermal L	oadings (%)			
AREA	Limiting Element	Rating (MVA)	Without Request	With Request	Contingency	Scenario	Project
OVEC	None Identified				-		

Scenario Explanations:

Table II.7.3. Potential Solutions for Identified Problems – OVEC

The following table lists any potential solutions that were identified to address the attributable constraints based on the assumptions used in this study. It must be noted that changes to the load forecast, and/or changes in the expansion plan could occur, and would impact the results of this study. In addition, the currently projected improvements to the transmission system were modeled in the cases. Changes to system conditions and/or the transmission expansion plans could also impact the results of this study.

ltem	Potential Solution	Estimated Need Date	Planning Level Cost Estimate				
	None Required						
	OVEC TOTAL (\$2017)						

Final Results

PowerSouth Balancing Authority (PS) Results

Study Structure and Assumptions

Transfer Sensitivity	Amount	Source	Sink	Year					
Southern to Santee Cooper	500 MW	Southern	Santee Cooper	2020					
	Load Flow Cases								
2017 Series Version 2 SERTP Models: Summer Peak									

Transmission System Impacts

The following tables below identify any constraints attributable to the requested transfer for the contingency and scenario that resulted in the most significant loadings for the conditions studied. Other unit out scenarios or contingencies may also result in constraints to these or other facilities.

Table II.8.1. Pass 0 – Transmission System Impacts with No Enhancements – PS

The following table identifies significant **PS** thermal constraints without any enhancements to the transmission system.

			Thermal Lo	oadings (%)			
AREA	Limiting Element	Rating (MVA)	Without Request	With Request	Contingency	Scenario	Project
PS	None Identified	-	-	-	-	-	-

Scenario Explanations:

Table II.8.2. Pass 1 – Potential Future Transmission System Impacts – PS

The following table depicts thermal loadings of **PS** transmission facilities that could become potential constraints in future years or with different queuing assumptions, but are not overloaded in the study year with all proposed enhancements to the transmission system.

			Thermal Lo	oadings (%)			
AREA	Limiting Element	Rating (MVA)	Without Request	With Request	Contingency	Scenario	Project
PS	None Identified						

Scenario Explanations:

Table II.8.3. Potential Solutions for Identified Problems – PS

The following table lists any potential solutions that were identified to address the attributable constraints based on the assumptions used in this study. It must be noted that changes to the load forecast, and/or changes in the expansion plan could occur, and would impact the results of this study. In addition, the currently projected improvements to the transmission system were modeled in the cases. Changes to system conditions and/or the transmission expansion plans could also impact the results of this study.

ltem	Potential Solution	Estimated Need Date	Planning Level Cost Estimate				
	None Required						
	PS TOTAL (\$2017)						

Final Results

Southern Balancing Authority (SBAA) Results

Study Structure and Assumptions

Transfer Sensitivity	Amount	Source	Sink	Year					
Southern to Santee Cooper	500 MW	Southern	Santee Cooper	2020					
	Load Flow Cases								
2017 Series Version 2 SERTP Models: Summer Peak									

Transmission System Impacts

The following tables below identify any constraints attributable to the requested transfer for the contingency and scenario that resulted in the most significant loadings for the conditions studied. Other unit out scenarios or contingencies may also result in constraints to these or other facilities.

Table II.9.1. Pass 0 – Transmission System Impacts with No Enhancements – SBAA

The following table identifies significant **SBAA** thermal constraints without any enhancements to the transmission system.

			Thermal Lo	oadings (%)			
ARE	A Limiting Element	Rating (MVA)	Without Request	With Request	Contingency	Scenario	Project
SBA	A None Identified						

Scenario Explanations:

Southeastern Regional TRANSMISSION PLANNING

Economic Planning Studies

Final Results

Table II.9.2. Pass 1 – Potential Future Transmission System Impacts – SBAA

The following table depicts thermal loadings of **SBAA** transmission facilities that could become potential constraints in future years or with different queuing assumptions, but are not overloaded in the study year with all proposed enhancements to the transmission system.

		1	Thermal Loadings (%)				
AREA	Limiting Element	Rating (MVA)	Without Request	Contingency		Scenario	Project
SBAA	387070 3BRENTWD 115 - 387091 3S HILLS2 115	251	96.8	99.0	387060 6CRIST6 230 - 387064 3CRIST3 B4 115	1	
SBAA	384153 3GORGAS#1 115 - 384155 6GORGAS 6 230	480	94.5	96.3	384156 6MILLER6 230 - 384172 6BOYLESM1 230	2	
SBAA	381378 6BOGGS RD 230 - 382031 6PURCELL RD 230	509	92.6	95.4	381350 6SWEETBOTOM 230 - 382623 6NORCROSS B3 230	3	
SBAA	380379 3MORELAND AV 115 - 381915 3KIRKWOOD 115	96	90.7	94.5	380368 3ELLENWOOD 115 - 382707 3MORROW B3 115	4	
SBAA	381927 3SHOAL CREEK 115 - 382094 3GWINCO WFP 115	114	90.1	94.1	380011 8S HALL 500 - 382035 6S HALL LS 230	4	
SBAA	385930 3ANISTON3 B2 115 - 385931 6ANISTON6 B2 230	392	90.4	93.8	384305 6ANISTON6 B1 230 - 385931 6ANISTON6 B2 230	5	
SBAA	380208 6NELSON 230 - 380954 3NELSON 115	176	91.4	93.6	380208 6NELSON 230 - 380954 3NELSON 115	4	

Scenario Explanations:

1. Crist Common Scrubber Offline, Shoulder (93% Load Level) Case

2. Gaston Unit #5 Offline, Shoulder (93% Load Level) Case

3. Rocky Mountain Unit #1 Offline, Summer Peak Case

4. Vogtle Unit #1 Offline, Summer Peak Case

5. McDonough Unit #4 Offline, Shoulder (93% Load Level) Case

Economic Planning Studies Final Results

Table II.9.3. Potential Solutions for Identified Problems – SBAA

The following table lists any potential solutions that were identified to address the attributable constraints based on the assumptions used in this study. It must be noted that changes to the load forecast, and/or changes in the expansion plan could occur, and would impact the results of this study. In addition, the currently projected improvements to the transmission system were modeled in the cases. Changes to system conditions and/or the transmission expansion plans could also impact the results of this study.

ltem	Potential Solution	Estimated Need Date	Planning Level Cost Estimate			
	None Required					
	SBAA TOTAL (\$2017)					

Economic Planning Study Additional Interchange Assumptions – SBAA

The following tables below list any interface reservations that were preserved in the economic planning studies in addition to those modeled in the Version 2 SERTP Models.

Table II.9.4. Additional Transactions

OASIS Ref. #	POR	POD	Amount (MW)

Table II.9.5. Capacity Benefit Margin (CBM)

SERTP Sponsor	Interface	Amount (MW)
Southern	Duke	350
Southern	TVA	300
Southern	MISO	100
Southern	SCPSA	50

Table II.9.6. Transmission Reliability Margin (TRM)

SERTP Sponsor	Interface	Amount (MW)
Southern	Import from Duke	167
GTC	Import from Duke	102
MEAG	Import from Duke	22
Dalton	Import from Duke	3
Southern	Import from MISO	209
Southern	Import from TVA	266
GTC	Import from TVA	67
MEAG	Import from TVA	15
Dalton	Import from TVA	2

Final Results

Tennessee Valley Authority Balancing Authority (TVA) Results

Study Structure and Assumptions

Transfer SensitivityAmountSourceSinkYear								
Southern to Santee Cooper 500 MW Southern Santee Cooper 2020								
Load Flow Cases								
2017 Series Version 2 SERTP Models: Summer Peak								

Transmission System Impacts

The following tables below identify any constraints attributable to the requested transfer for the contingency and scenario that resulted in the most significant loadings for the conditions studied. Other unit out scenarios or contingencies may also result in constraints to these or other facilities.

Table II.10.1. Pass 0 – Transmission System Impacts with No Enhancements – TVA

The following table identifies significant *TVA* thermal constraints without any enhancements to the transmission system.

			Thermal Lo	oadings (%)			
AREA	Limiting Element	Rating (MVA)	Without Request	With Request	Contingency	Scenario	Project
TVA	None Identified	-	-	-	-	-	_

Scenario Explanations:

Table II.10.2. Pass 1 – Potential Future Transmission System Impacts – TVA

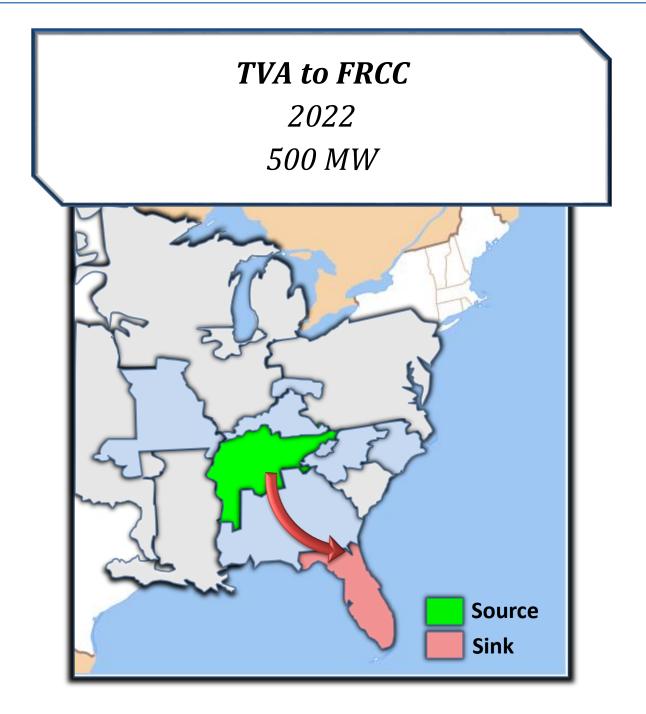
The following table depicts thermal loadings of **TVA** transmission facilities that could become potential constraints in future years or with different queuing assumptions, but are not overloaded in the study year with all proposed enhancements to the transmission system.

(MVA) Request Request				Thermal Lo	oadings (%)			
TVA None Identified		Limiting Element	0			Contingency	Scenario	Project
	TVA	None Identified						

Scenario Explanations:

Table II.10.3. Potential Solutions for Identified Problems – TVA

The following table lists any potential solutions that were identified to address the attributable constraints based on the assumptions used in this study. It must be noted that changes to the load forecast, and/or changes in the expansion plan could occur, and would impact the results of this study. In addition, the currently projected improvements to the transmission system were modeled in the cases. Changes to system conditions and/or the transmission expansion plans could also impact the results of this study.


ltem	Potential Solution	Estimated Need Date	Planning Level Cost Estimate			
	None Required					
	\$0 ⁽¹⁾					

Economic Planning Studies Final Results

2017

III. Study Request 3 Results

Southeastern Regional TRANSMISSION PLANNING

Economic Planning Studies Final Results

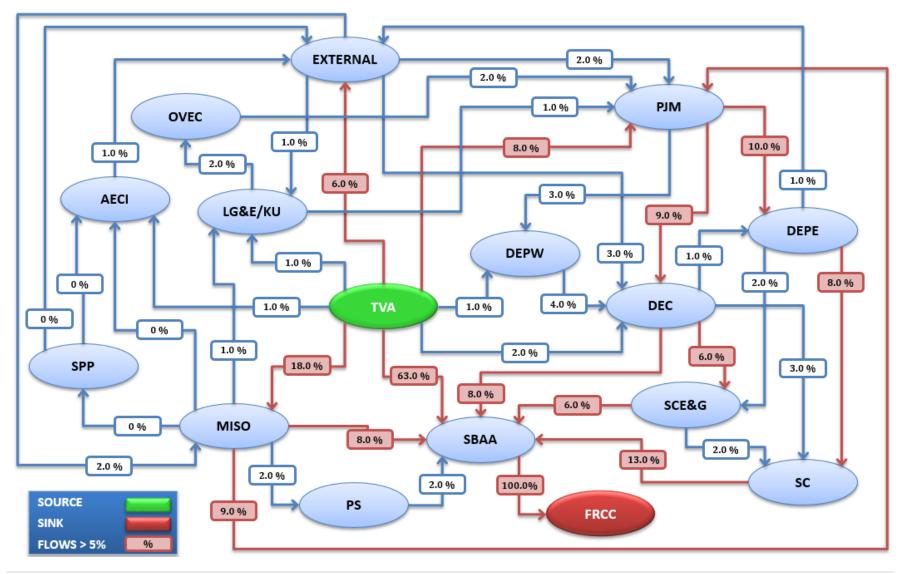

2017

Table III.1.1. Total Cost Identified by the SERTP Sponsors

Balancing Authority	Planning Level Cost Estimate
Associated Electric Cooperative (AECI)	\$0
Duke Carolinas (DEC)	\$0
Duke Progress East (DEPE)	\$0
Duke Progress West (DEPW)	\$0
Louisville Gas & Electric and Kentucky Utilities (LG&E/KU)	\$0
Ohio Valley Electric Cooperative (OVEC)	\$0
PowerSouth (PS)	\$0
Southern (SBAA)	\$6,800,000
Tennessee Valley Authority (TVA)	\$0
TOTAL (\$2017)	\$6,800,000

Southeastern Regional TRANSMISSION PLANNING Economic Planning Studies Final Results

Diagram III.1.1. Transfer Flow Diagram (% of Total Transfer)

2017

Final Results

Associated Electric Cooperative Balancing Authority (AECI) Results

Study Structure and Assumptions

Transfer Sensitivity Amount Source Sink Year								
TVA to FRCC 500 MW TVA FRCC 2022								
Load Flow Cases								
2017 Series Version 2 SERTP Models: Summer Peak								

Transmission System Impacts

The following tables below identify any constraints attributable to the requested transfer for the contingency and scenario that resulted in the most significant loadings for the conditions studied. Other unit out scenarios or contingencies may also result in constraints to these or other facilities.

Table III.2.1. Pass 0 – Transmission System Impacts with No Enhancements – AECI

The following table identifies significant *AECI* thermal constraints without any enhancements to the transmission system.

			Thermal Lo	oadings (%)			
AREA	Limiting Element	Rating (MVA)	Without Request	With Request	Contingency	Scenario	Project
AECI	None Identified	-	-	-	-	-	_

Scenario Explanations:

Table III.2.2. Pass 1 – Potential Future Transmission System Impacts – AECI

The following table depicts thermal loadings of **AECI** transmission facilities that could become potential constraints in future years or with different queuing assumptions, but are not overloaded in the study year with all proposed enhancements to the transmission system.

			Thermal Lo	badings (%)			
AREA	Limiting Element	Rating (MVA)	Without Request	With Request	Contingency	Scenario	Project
AECI	None Identified				-		

Scenario Explanations:

Table III.2.3. Potential Solutions for Identified Problems – AECI

The following table lists any potential solutions that were identified to address the attributable constraints based on the assumptions used in this study. It must be noted that changes to the load forecast, and/or changes in the expansion plan could occur, and would impact the results of this study. In addition, the currently projected improvements to the transmission system were modeled in the cases. Changes to system conditions and/or the transmission expansion plans could also impact the results of this study.

Item	Potential Solution	Estimated Need Date	Planning Level Cost Estimate				
	None Required						
	AECI TOTAL (\$2017)						

Final Results

Duke Carolinas Balancing Authority (DEC) Results

Study Structure and Assumptions

Transfer Sensitivity	Amount	Source	Sink	Year					
TVA to FRCC	500 MW	TVA	FRCC	2022					
	Load Flow	Cases							
2017 Serie	2017 Series Version 2 SERTP Models: Summer Peak								

Transmission System Impacts

The following tables below identify any constraints attributable to the requested transfer for the contingency and scenario that resulted in the most significant loadings for the conditions studied. Other unit out scenarios or contingencies may also result in constraints to these or other facilities.

Table III.3.1. Pass 0 – Transmission System Impacts with No Enhancements – DEC

The following table identifies significant **DEC** thermal constraints without any enhancements to the transmission system.

		Thermal Lo	oadings (%)				
AREA	Limiting Element	Rating (MVA)	Without Request	With Request	Contingency	Scenario	Project
DEC	None Identified	-	-	-	-	-	—

Scenario Explanations:

Table III.3.2. Pass 1 – Potential Future Transmission System Impacts – DEC

The following table depicts thermal loadings of **DEC** transmission facilities that could become potential constraints in future years or with different queuing assumptions, but are not overloaded in the study year with all proposed enhancements to the transmission system.

			Thermal Lo	oadings (%)			
AREA	Limiting Element	Rating (MVA)	Without Request	With Request	Contingency	Scenario	Project
DEC	None Identified				-		

Scenario Explanations:

Table III.3.3. Potential Solutions for Identified Problems – DEC

The following table lists any potential solutions that were identified to address the attributable constraints based on the assumptions used in this study. It must be noted that changes to the load forecast, and/or changes in the expansion plan could occur, and would impact the results of this study. In addition, the currently projected improvements to the transmission system were modeled in the cases. Changes to system conditions and/or the transmission expansion plans could also impact the results of this study.

Item	Potential Solution	Estimated Need Date	Planning Level Cost Estimate				
	None Required						
	DEC TOTAL (\$2017)						

Final Results

Duke Progress East Balancing Authority (DEPE) Results

Study Structure and Assumptions

Transfer Sensitivity	Amount	Source	Sink	Year						
TVA to FRCC	500 MW	TVA	FRCC	2022						
	Load Flow Cases									
2017 Series Version 2 SERTP Models: Summer Peak										

Transmission System Impacts

The following tables below identify any constraints attributable to the requested transfer for the contingency and scenario that resulted in the most significant loadings for the conditions studied. Other unit out scenarios or contingencies may also result in constraints to these or other facilities.

Table III.4.1. Pass 0 – Transmission System Impacts with No Enhancements – DEPE

The following table identifies significant **DEPE** thermal constraints without any enhancements to the transmission system.

		Thermal Lo	oadings (%)				
AREA	Limiting Element	Rating (MVA)	Without Request	With Request	Contingency	Scenario	Project
DEPE	None Identified	-	-	-	-	-	—

Scenario Explanations:

Table III.4.2. Pass 1 – Potential Future Transmission System Impacts – DEPE

The following table depicts thermal loadings of **DEPE** transmission facilities that could become potential constraints in future years or with different queuing assumptions, but are not overloaded in the study year with all proposed enhancements to the transmission system.

			Thermal Lo	oadings (%)			
AREA	Limiting Element	Rating (MVA)	Without Request	With Request	Contingency	Scenario	Project
DEPE	None Identified						

Scenario Explanations:

Table III.4.3. Potential Solutions for Identified Problems – DEPE

The following table lists any potential solutions that were identified to address the attributable constraints based on the assumptions used in this study. It must be noted that changes to the load forecast, and/or changes in the expansion plan could occur, and would impact the results of this study. In addition, the currently projected improvements to the transmission system were modeled in the cases. Changes to system conditions and/or the transmission expansion plans could also impact the results of this study.

ltem	Potential Solution	Estimated Need Date	Planning Level Cost Estimate				
	None Required						
	DEPE TOTAL (\$2017)						

Final Results

Duke Progress West (DEPW) Results

Study Structure and Assumptions

Transfer Sensitivity	Amount	Source	Sink	Year					
TVA to FRCC	500 MW	TVA	FRCC	2022					
	Load Flow	Cases							
2017 Serie	2017 Series Version 2 SERTP Models: Summer Peak								

Transmission System Impacts

The following tables below identify any constraints attributable to the requested transfer for the contingency and scenario that resulted in the most significant loadings for the conditions studied. Other unit out scenarios or contingencies may also result in constraints to these or other facilities.

Table III.5.1. Pass 0 – Transmission System Impacts with No Enhancements – DEPW

The following table identifies significant *DEPW* thermal constraints without any enhancements to the transmission system.

		Thermal Lo	oadings (%)				
AREA	Limiting Element	Rating (MVA)	Without Request	With Request	Contingency	Scenario	Project
DEPW	None Identified	-	_	-	-	-	—

Scenario Explanations:

Table III.5.2. Pass 1 – Potential Future Transmission System Impacts – DEPW

The following table depicts thermal loadings of **DEPW** transmission facilities that could become potential constraints in future years or with different queuing assumptions, but are not overloaded in the study year with all proposed enhancements to the transmission system.

(MVA) Request Request				Thermal L	oadings (%)			
		Limiting Element	U			Contingency	Scenario	Project
DEPW None Identified	DEPW	None Identified				-		

Scenario Explanations:

Table III.5.3. Potential Solutions for Identified Problems – DEPW

The following table lists any potential solutions that were identified to address the attributable constraints based on the assumptions used in this study. It must be noted that changes to the load forecast, and/or changes in the expansion plan could occur, and would impact the results of this study. In addition, the currently projected improvements to the transmission system were modeled in the cases. Changes to system conditions and/or the transmission expansion plans could also impact the results of this study.

Item	Potential Solution	Estimated Need Date	Planning Level Cost Estimate				
	None Required		\$0				
	DEPW TOTAL (\$2017)						

Louisville Gas & Electric and Kentucky Utilities Balancing Authority (LG&E/KU) Results

Study Structure and Assumptions

Transfer Sensitivity Amount Source Sink Year								
TVA to FRCC	500 MW	TVA	FRCC	2022				
Load Flow Cases								
2017 Series Version 2 SERTP Models: Summer Peak								

Transmission System Impacts

The following tables below identify any constraints attributable to the requested transfer for the contingency and scenario that resulted in the most significant loadings for the conditions studied. Other unit out scenarios or contingencies may also result in constraints to these or other facilities.

Table III.6.1. Pass 0 – Transmission System Impacts with No Enhancements – LG&E/KU

The following table identifies significant *LG&E/KU* thermal constraints without any enhancements to the transmission system.

			Thermal Lo	oadings (%)			
AREA	Limiting Element	Rating (MVA)	Without Request	With Request	Contingency	Scenario	Project
LG&E/KU	None Identified	-	_	-	-	-	—

Scenario Explanations:

Table III.6.2. Pass 1 – Potential Future Transmission System Impacts – LG&E/KU

The following table depicts thermal loadings of *LG&E/KU* transmission facilities that could become potential constraints in future years or with different queuing assumptions, but are not overloaded in the study year with all proposed enhancements to the transmission system.

(MVA) Request Request				Thermal L	oadings (%)			
LG&E/KIL None Identified		Limiting Element	-			Contingency	Scenario	Project
	LG&E/KU	None Identified				-		

Scenario Explanations:

Economic Planning Studies Final Results

Table III.6.3. Potential Solutions for Identified Problems – LG&E/KU

The following table lists any potential solutions that were identified to address the attributable constraints based on the assumptions used in this study. It must be noted that changes to the load forecast, and/or changes in the expansion plan could occur, and would impact the results of this study. In addition, the currently projected improvements to the transmission system were modeled in the cases. Changes to system conditions and/or the transmission expansion plans could also impact the results of this study.

ltem	Potential Solution	Estimated Need Date	Planning Level Cost Estimate				
	None Required						
	LG&E/KU TOTAL (\$2017)						

Final Results

Ohio Valley Electric Corporation Balancing Authority (OVEC) Results

Study Structure and Assumptions

Transfer Sensitivity Amount Source Sink Year								
TVA to FRCC	500 MW	TVA	FRCC	2022				
Load Flow Cases								
2017 Series Version 2 SERTP Models: Summer Peak								

Transmission System Impacts

The following tables below identify any constraints attributable to the requested transfer for the contingency and scenario that resulted in the most significant loadings for the conditions studied. Other unit out scenarios or contingencies may also result in constraints to these or other facilities.

Table III.7.1. Pass 0 – Transmission System Impacts with No Enhancements – OVEC

The following table identifies significant **OVEC** thermal constraints without any enhancements to the transmission system.

			Thermal Lo	oadings (%)			
AREA	Limiting Element	Rating (MVA)	Without Request	With Request	Contingency	Scenario	Project
OVEC	None Identified	-	-	-	-	-	—

Scenario Explanations:

Table III.7.2. Pass 1 – Potential Future Transmission System Impacts – OVEC

The following table depicts thermal loadings of **OVEC** transmission facilities that could become potential constraints in future years or with different queuing assumptions, but are not overloaded in the study year with all proposed enhancements to the transmission system.

			Thermal Lo	oadings (%)			
AREA	Limiting Element	Rating (MVA)	Without Request	With Request	Contingency	Scenario	Project
OVEC	None Identified				-		

Scenario Explanations:

Table III.7.3. Potential Solutions for Identified Problems – OVEC

The following table lists any potential solutions that were identified to address the attributable constraints based on the assumptions used in this study. It must be noted that changes to the load forecast, and/or changes in the expansion plan could occur, and would impact the results of this study. In addition, the currently projected improvements to the transmission system were modeled in the cases. Changes to system conditions and/or the transmission expansion plans could also impact the results of this study.

ltem	Potential Solution	Estimated Need Date	Planning Level Cost Estimate				
	None Required						
	OVEC TOTAL (\$2017)						

Final Results

PowerSouth Balancing Authority (PS) Results

Study Structure and Assumptions

Transfer Sensitivity Amount Source Sink Year								
TVA to FRCC	500 MW	TVA	FRCC	2022				
Load Flow Cases								
2017 Series Version 2 SERTP Models: Summer Peak								

Transmission System Impacts

The following tables below identify any constraints attributable to the requested transfer for the contingency and scenario that resulted in the most significant loadings for the conditions studied. Other unit out scenarios or contingencies may also result in constraints to these or other facilities.

Table III.8.1. Pass 0 – Transmission System Impacts with No Enhancements – PS

The following table identifies significant **PS** thermal constraints without any enhancements to the transmission system.

			Thermal Lo	oadings (%)			
AREA	Limiting Element	Rating (MVA)	Without Request	With Request	Contingency	Scenario	Project
PS	None Identified	-	-	-	-	-	—

Scenario Explanations:

Table III.8.2. Pass 1 – Potential Future Transmission System Impacts – PS

The following table depicts thermal loadings of **PS** transmission facilities that could become potential constraints in future years or with different queuing assumptions, but are not overloaded in the study year with all proposed enhancements to the transmission system.

			Thermal Lo	oadings (%)			
AREA	Limiting Element	Rating (MVA)	Without Request	With Request	Contingency	Scenario	Project
PS	None Identified						

Scenario Explanations:

Table III.8.3. Potential Solutions for Identified Problems – PS

The following table lists any potential solutions that were identified to address the attributable constraints based on the assumptions used in this study. It must be noted that changes to the load forecast, and/or changes in the expansion plan could occur, and would impact the results of this study. In addition, the currently projected improvements to the transmission system were modeled in the cases. Changes to system conditions and/or the transmission expansion plans could also impact the results of this study.

ltem	Potential Solution	Estimated Need Date	Planning Level Cost Estimate				
	None Required						
	PS TOTAL (\$2017)						

Final Results

Southern Balancing Authority (SBAA) Results

Study Structure and Assumptions

Transfer Sensitivity	Amount	Source	Sink	Year					
TVA to FRCC	500 MW	TVA	FRCC	2022					
Load Flow Cases									
2017 Serie	2017 Series Version 2 SERTP Models: Summer Peak								

Transmission System Impacts

The following tables below identify any constraints attributable to the requested transfer for the contingency and scenario that resulted in the most significant loadings for the conditions studied. Other unit out scenarios or contingencies may also result in constraints to these or other facilities.

Table III.9.1. Pass 0 – Transmission System Impacts with No Enhancements – SBAA

The following table identifies significant **SBAA** thermal constraints without any enhancements to the transmission system.

			Thermal L	oadings (%)			
AREA	Limiting Element	Rating (MVA)	WithoutWithRequestRequest		Contingency	Scenario	Project
SBAA	381419 3NUNEZ J 115 – 381445 3 STILLMORE 115	79	101.5(1)	106.1	380009 8W MCINTOSH 500 – 382113 8S_VOG_W MAC500	1	1
SBAA	381565 6R_NANTIFTON 230 - 381878 6N TIFTON B2 230	220	95.4	100.7	380024 8N TIFTON 500 - 380222 6N TIFTON LS 230	2	2

(1) A current operating procedure is sufficient to alleviate this identified constraint without the addition of the proposed transfer. However, the additional transfer exacerbates the loading on this transmission facility such that the operating procedure becomes insufficient.

Scenario Explanations:

1. McIntosh Unit #10 Offline, Shoulder (93% Load Level) Case 2. Hatch Unit #1 Offline, Summer Peak Case

Southeastern Regional TRANSMISSION PLANNING

Economic Planning Studies

Final Results

Table III.9.2. Pass 1 – Potential Future Transmission System Impacts – SBAA

The following table depicts thermal loadings of **SBAA** transmission facilities that could become potential constraints in future years or with different queuing assumptions, but are not overloaded in the study year with all proposed enhancements to the transmission system.

			Thermal Loadings (%)				
AREA	Limiting Element	Rating (MVA)	Without Request	With Request	Contingency	Scenario	Project
SBAA	380722 3SANDY BOTTM 115 - 381872 3N LAKELAND 115	47	98.2	99.2	381871 6ADEL 5 230 - 381878 6N TIFTON B2 230	1	
SBAA	380888 3DALTON 115 - 380892 3E DALTON B2 115	180	97.3	98.3	380888 3DALTON 115 - 380892 3E DALTON B2 115	2	
SBAA	380580 3CLITO 115 - 381483 3DOVER TP 115	63	91.8	97.0	380008 8VOGTLE 500 - 382113 8S_VOG_W MAC 500	3	
SBAA	380847 3BAXLEY 115 - 381098 3BRENTWOOD 115	85	90.5	93.9	380009 8W MCINTOSH 500 - 382113 8S_VOG_W MAC 500	3	

Scenario Explanations:

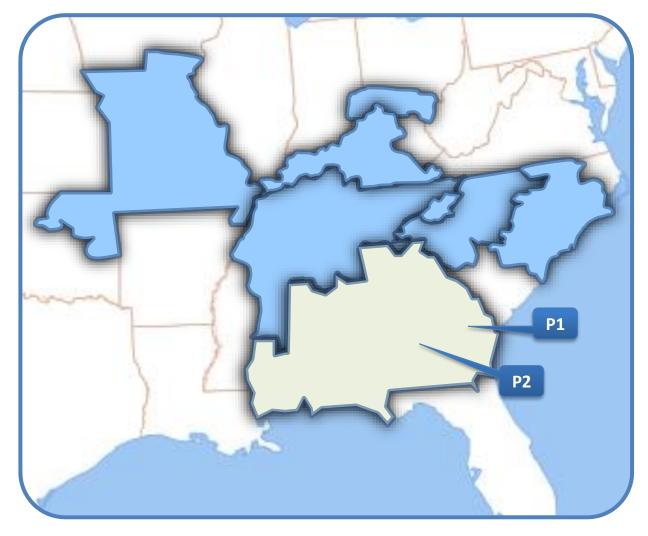
1. Lansing Smith Unit #3 Offline, Summer Peak Case

2. Rocky Mountain Unit #1 Offline, Summer Peak Case

3. McIntosh Unit #10 Offline, Summer Peak Case

Table III.9.3. Potential Solutions for Identified Problems – SBAA

The following table lists any potential solutions that were identified to address the attributable constraints based on the assumptions used in this study. It must be noted that changes to the load forecast, and/or changes in the expansion plan could occur, and would impact the results of this study. In addition, the currently projected improvements to the transmission system were modeled in the cases. Changes to system conditions and/or the transmission expansion plans could also impact the results of this study.


ltem	Potential Solution	Estimated Need Date	Planning Level Cost Estimate			
P1	 Statesboro Primary – Wadley Primary 115 kV T.L. Upgrade approximately 9.2 miles along the Nunez Junction – Stillmore section of the Statesboro – Wadley Primary 115 kV transmission line from 50°C to 100°C operation. 	2022	\$4,300,000			
P2	P2North Americus (GTC) 230 kV Substation• Replace 2% 230 kV Reactor with a new 3% 230 kV Reactor at North Americus on the North Tifton – North Americus 230 kV Line.		\$2,500,000			
	SBAA TOTAL (\$2017)					

Economic Planning Studies Final Results

2017

Diagram III.9.1. Approximate Location of Potential Solutions – SBAA

Economic Planning Study Additional Interchange Assumptions – SBAA

The following tables below list any interface reservations that were preserved in the economic planning studies in addition to those modeled in the Version 2 SERTP Models.

Table III.9.4. Additional Transactions

OASIS Ref. #	POR	POD	Amount (MW)
80579397	GTC	FPL	654
799236	SOCO	JEA	103
72136700	SOCO	JEA	275

Table III.9.5. Capacity Benefit Margin (CBM)

SERTP Sponsor	Interface	Amount (MW)
Southern	Duke	350
Southern	TVA	300
Southern	MISO	100
Southern	SCPSA	50

Table III.9.6. Transmission Reliability Margin (TRM)

SERTP Sponsor	Interface	Amount (MW)
Southern	Import from Duke	167
GTC	Import from Duke	102
MEAG	Import from Duke	22
Dalton	Import from Duke	3
Southern	Import from MISO	209
Southern	Import from TVA	266
GTC	Import from TVA	67
MEAG	Import from TVA	15
Dalton	Import from TVA	2

Final Results

Tennessee Valley Authority Balancing Authority (TVA) Results

Study Structure and Assumptions

Transfer Sensitivity	Amount	Source	Sink	Year					
TVA to FRCC 500 MW TVA FRCC 202									
Load Flow Cases									
2017 Series Version 2 SERTP Models: Summer Peak									

Transmission System Impacts

The following tables below identify any constraints attributable to the requested transfer for the contingency and scenario that resulted in the most significant loadings for the conditions studied. Other unit out scenarios or contingencies may also result in constraints to these or other facilities.

Table III.10.1. Pass 0 – Transmission System Impacts with No Enhancements – TVA

The following table identifies significant *TVA* thermal constraints without any enhancements to the transmission system.

		Thermal Loadings (%)					
AREA	Limiting Element	Rating (MVA)	Without Request	With Request	Contingency	Scenario	Project
TVA	None Identified	-	-	-	-	-	_

Scenario Explanations:

Table III.10.2. Pass 1 – Potential Future Transmission System Impacts – TVA

The following table depicts thermal loadings of **TVA** transmission facilities that could become potential constraints in future years or with different queuing assumptions, but are not overloaded in the study year with all proposed enhancements to the transmission system.

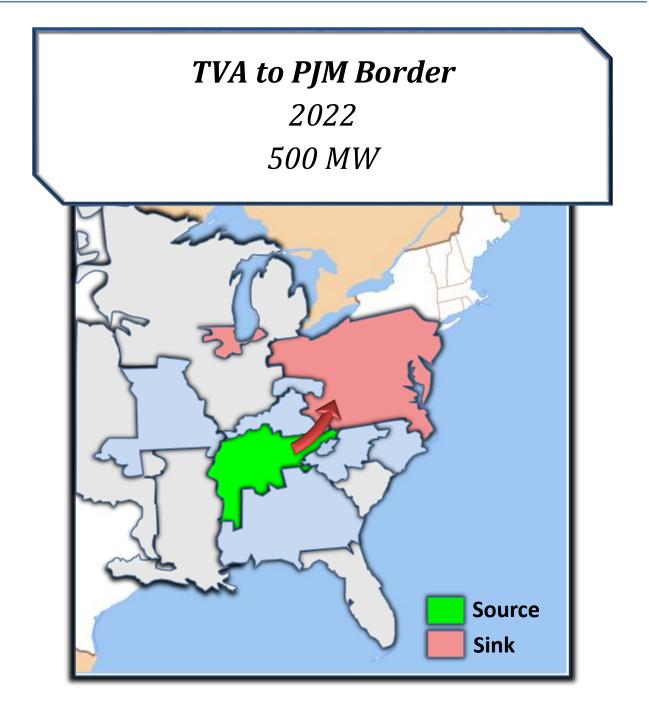
AREALimiting ElementRating (MVA)With RequestWith RequestContingencyScenarioProjectTVANone Identified				Thermal Lo	oadings (%)			
TVA None Identified		Limiting Element	U U			Contingency	Scenario	Project
	TVA	None Identified				-		

Scenario Explanations:

Economic Planning Studies Final Results

Table III.10.3. Potential Solutions for Identified Problems – TVA

The following table lists any potential solutions that were identified to address the attributable constraints based on the assumptions used in this study. It must be noted that changes to the load forecast, and/or changes in the expansion plan could occur, and would impact the results of this study. In addition, the currently projected improvements to the transmission system were modeled in the cases. Changes to system conditions and/or the transmission expansion plans could also impact the results of this study.


ltem	Potential Solution	Estimated Need Date	Planning Level Cost Estimate
	None Required		
	TVA TOTAL (\$2017)		\$0 ⁽¹⁾

Economic Planning Studies <u>Final R</u>esults

2017

IV. Study Request 4 Results

Economic Planning Studies Final Results

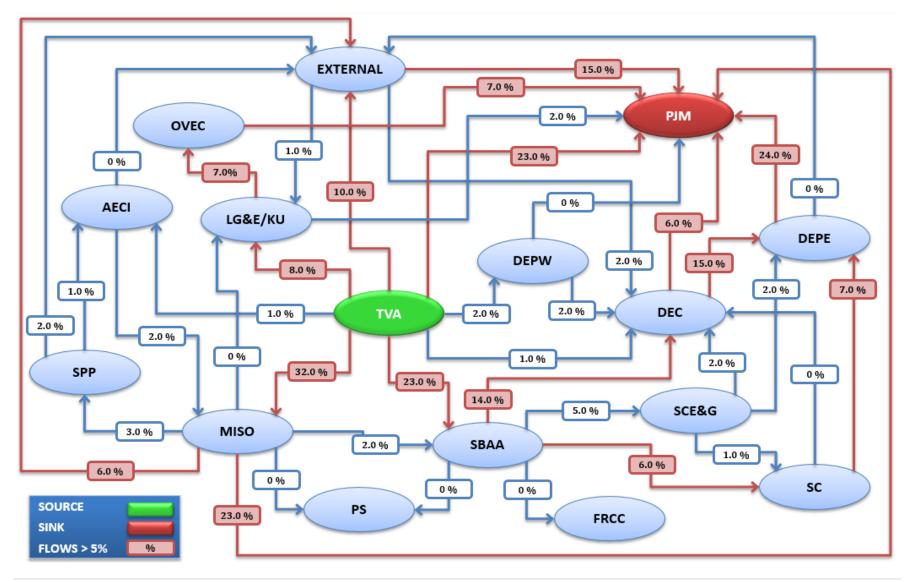

2017

Table IV.1.1. Total Cost Identified by the SERTP Sponsors

Balancing Authority	Planning Level Cost Estimate
Associated Electric Cooperative (AECI)	\$0
Duke Carolinas (DEC)	\$0
Duke Progress East (DEPE)	\$0
Duke Progress West (DEPW)	\$0
Louisville Gas & Electric and Kentucky Utilities (LG&E/KU)	\$0
Ohio Valley Electric Cooperative (OVEC)	\$0
PowerSouth (PS)	\$0
Southern (SBAA)	\$0
Tennessee Valley Authority (TVA)	\$0
TOTAL (\$2017)	\$0

Southeastern
Regional
TRANSMISSION PLANNINGEconomic Planning Studies
Final Results2017

Diagram IV.1.1. Transfer Flow Diagram (% of Total Transfer)

Final Results

Associated Electric Cooperative Balancing Authority (AECI) Results

Study Structure and Assumptions

Transfer Sensitivity	Amount	Source	Sink	Year					
TVA to PJM	500 MW	TVA	PJM	2022					
Load Flow Cases									
2017 Series Version 2 SERTP Models: Winter Peak									

Transmission System Impacts

The following tables below identify any constraints attributable to the requested transfer for the contingency and scenario that resulted in the most significant loadings for the conditions studied. Other unit out scenarios or contingencies may also result in constraints to these or other facilities.

Table IV.2.1. Pass 0 – Transmission System Impacts with No Enhancements – AECI

The following table identifies significant *AECI* thermal constraints without any enhancements to the transmission system.

			Thermal Lo	oadings (%)			
AREA	Limiting Element	Rating (MVA)	Without Request	With Request	Contingency	Scenario	Project
AECI	None Identified	-	_	-	-	-	—

Scenario Explanations:

Table IV.2.2. Pass 1 – Potential Future Transmission System Impacts – AECI

The following table depicts thermal loadings of **AECI** transmission facilities that could become potential constraints in future years or with different queuing assumptions, but are not overloaded in the study year with all proposed enhancements to the transmission system.

			Thermal Lo	oadings (%)			
AREA	Limiting Element	Rating (MVA)	Without Request	With Request	Contingency	Scenario	Project
AECI	None Identified				-		

Scenario Explanations:

Table IV.2.3. Potential Solutions for Identified Problems – AECI

The following table lists any potential solutions that were identified to address the attributable constraints based on the assumptions used in this study. It must be noted that changes to the load forecast, and/or changes in the expansion plan could occur, and would impact the results of this study. In addition, the currently projected improvements to the transmission system were modeled in the cases. Changes to system conditions and/or the transmission expansion plans could also impact the results of this study.

Item	Potential Solution	Estimated Need Date	Planning Level Cost Estimate
	None Required		
	AECI TOTAL (\$2017)		\$0 ⁽¹⁾

Final Results

Duke Carolinas Balancing Authority (DEC) Results

Study Structure and Assumptions

Transfer Sensitivity	Amount	Source	Sink	Year					
TVA to PJM	500 MW	TVA	PJM	2022					
Load Flow Cases									
2017 Series Version 2 SERTP Models: Winter Peak									

Transmission System Impacts

The following tables below identify any constraints attributable to the requested transfer for the contingency and scenario that resulted in the most significant loadings for the conditions studied. Other unit out scenarios or contingencies may also result in constraints to these or other facilities.

Table IV.3.1. Pass 0 – Transmission System Impacts with No Enhancements – DEC

The following table identifies significant **DEC** thermal constraints without any enhancements to the transmission system.

			Thermal Lo	oadings (%)			
AREA	Limiting Element	Rating (MVA)	Without Request	With Request	Contingency	Scenario	Project
DEC	None Identified	-	_	-	-	-	—

Scenario Explanations:

Table IV.3.2. Pass 1 – Potential Future Transmission System Impacts – DEC

The following table depicts thermal loadings of **DEC** transmission facilities that could become potential constraints in future years or with different queuing assumptions, but are not overloaded in the study year with all proposed enhancements to the transmission system.

			Thermal Lo	oadings (%)			
AREA	Limiting Element	Rating (MVA)	Without Request	With Request	Contingency	Scenario	Project
DEC	None Identified						

Scenario Explanations:

Table IV.3.3. Potential Solutions for Identified Problems – DEC

The following table lists any potential solutions that were identified to address the attributable constraints based on the assumptions used in this study. It must be noted that changes to the load forecast, and/or changes in the expansion plan could occur, and would impact the results of this study. In addition, the currently projected improvements to the transmission system were modeled in the cases. Changes to system conditions and/or the transmission expansion plans could also impact the results of this study.

Item	Potential Solution	Estimated Need Date	Planning Level Cost Estimate				
	None Required						
	DEC TOTAL (\$2017)						

Final Results

Duke Progress East Balancing Authority (DEPE) Results

Study Structure and Assumptions

Transfer Sensitivity	Amount	Transfer Sensitivity Amount Source Sink Year										
TVA to PJM 500 MW TVA PJM 2022												
Load Flow Cases												
2017 Series Version 2 SERTP Models: Winter Peak												

Transmission System Impacts

The following tables below identify any constraints attributable to the requested transfer for the contingency and scenario that resulted in the most significant loadings for the conditions studied. Other unit out scenarios or contingencies may also result in constraints to these or other facilities.

Table IV.4.1. Pass 0 – Transmission System Impacts with No Enhancements – DEPE

The following table identifies significant *DEPE* thermal constraints without any enhancements to the transmission system.

			Thermal Le	oadings (%)			
AREA	Limiting Element	Rating (MVA)	Without Request	With Request	Contingency	Scenario	Project
DEPE	None Identified	-	-	-	-	-	_

Scenario Explanations:

Table IV.4.2. Pass 1 – Potential Future Transmission System Impacts – DEPE

The following table depicts thermal loadings of **DEPE** transmission facilities that could become potential constraints in future years or with different queuing assumptions, but are not overloaded in the study year with all proposed enhancements to the transmission system.

			Thermal Lo	oadings (%)			
AREA	Limiting Element	Rating (MVA)	Without Request	With Request	Contingency	Scenario	Project
DEPE	None Identified						

Scenario Explanations:

Table IV.4.3. Potential Solutions for Identified Problems – DEPE

The following table lists any potential solutions that were identified to address the attributable constraints based on the assumptions used in this study. It must be noted that changes to the load forecast, and/or changes in the expansion plan could occur, and would impact the results of this study. In addition, the currently projected improvements to the transmission system were modeled in the cases. Changes to system conditions and/or the transmission expansion plans could also impact the results of this study.

ltem	Potential Solution	Estimated Need Date	Planning Level Cost Estimate				
	None Required						
	DEPE TOTAL (\$2017)						

Final Results

Duke Progress West (DEPW) Results

Study Structure and Assumptions

Transfer Sensitivity	Amount	Source	Sink	Year					
TVA to PJM 500 MW TVA PJM 2022									
Load Flow Cases									
2017 Series Version 2 SERTP Models: Winter Peak									

Transmission System Impacts

The following tables below identify any constraints attributable to the requested transfer for the contingency and scenario that resulted in the most significant loadings for the conditions studied. Other unit out scenarios or contingencies may also result in constraints to these or other facilities.

Table IV.5.1. Pass 0 – Transmission System Impacts with No Enhancements – DEPW

The following table identifies significant **DEPW** thermal constraints without any enhancements to the transmission system.

			Thermal Lo	oadings (%)			
AREA	Limiting Element	Rating (MVA)	Without Request	With Request	Contingency	Scenario	Project
DEPW	None Identified	-	_	-	-	-	_

Scenario Explanations:

Table IV.5.2. Pass 1 – Potential Future Transmission System Impacts – DEPW

The following table depicts thermal loadings of **DEPW** transmission facilities that could become potential constraints in future years or with different queuing assumptions, but are not overloaded in the study year with all proposed enhancements to the transmission system.

AREALimiting ElementRating (MVA)Without RequestWith RequestContingencyScenarioProjectDEPWNone Identified				Thermal Lo	oadings (%)			
DEPW None Identified		Limiting Element	U U			Contingency	Scenario	Project
	DEPW	None Identified						

Scenario Explanations:

Table IV.5.3. Potential Solutions for Identified Problems – DEPW

The following table lists any potential solutions that were identified to address the attributable constraints based on the assumptions used in this study. It must be noted that changes to the load forecast, and/or changes in the expansion plan could occur, and would impact the results of this study. In addition, the currently projected improvements to the transmission system were modeled in the cases. Changes to system conditions and/or the transmission expansion plans could also impact the results of this study.

ltem	Potential Solution	Estimated Need Date	Planning Level Cost Estimate				
	None Required		\$0				
	DEPW TOTAL (\$2017)						

Louisville Gas & Electric and Kentucky Utilities Balancing Authority (LG&E/KU) Results

Study Structure and Assumptions

Transfer Sensitivity	Transfer SensitivityAmountSourceSinkYear										
TVA to PJM 500 MW TVA PJM 2022											
Load Flow Cases											
2017 Seri	2017 Series Version 2 SERTP Models: Winter Peak										

Transmission System Impacts

The following tables below identify any constraints attributable to the requested transfer for the contingency and scenario that resulted in the most significant loadings for the conditions studied. Other unit out scenarios or contingencies may also result in constraints to these or other facilities.

Table IV.6.1. Pass 0 – Transmission System Impacts with No Enhancements – LG&E/KU

The following table identifies significant *LG&E/KU* thermal constraints without any enhancements to the transmission system.

			Thermal Lo	oadings (%)			
AREA	Limiting Element	Rating (MVA)	Without Request	With Request	Contingency	Scenario	Project
LG&E/KU	None Identified	-	_	-	-	-	—

Scenario Explanations:

Table IV.6.2. Pass 1 – Potential Future Transmission System Impacts – LG&E/KU

The following table depicts thermal loadings of *LG&E/KU* transmission facilities that could become potential constraints in future years or with different queuing assumptions, but are not overloaded in the study year with all proposed enhancements to the transmission system.

			Thermal Lo	oadings (%)			
AREA	Limiting Element	Rating (MVA)	Without Request	With Request	Contingency	Scenario	Project
LG&E/KU	None Identified				-		

Scenario Explanations:

Economic Planning Studies Final Results

Table IV.6.3. Potential Solutions for Identified Problems – LG&E/KU

The following table lists any potential solutions that were identified to address the attributable constraints based on the assumptions used in this study. It must be noted that changes to the load forecast, and/or changes in the expansion plan could occur, and would impact the results of this study. In addition, the currently projected improvements to the transmission system were modeled in the cases. Changes to system conditions and/or the transmission expansion plans could also impact the results of this study.

ltem	Potential Solution	Estimated Need Date	Planning Level Cost Estimate
	None Required		
	LG&E/KU TOTAL (\$2017)		\$0 ⁽¹⁾

Final Results

Ohio Valley Electric Corporation Balancing Authority (OVEC) Results

Study Structure and Assumptions

Transfer Sensitivity	Amount	Source	Sink	Year					
TVA to PJM	500 MW	TVA	PJM	2022					
Load Flow Cases									
2017 Seri	es Version 2 SERTF	PModels: Winte	er Peak						

Transmission System Impacts

The following tables below identify any constraints attributable to the requested transfer for the contingency and scenario that resulted in the most significant loadings for the conditions studied. Other unit out scenarios or contingencies may also result in constraints to these or other facilities.

Table IV.7.1. Pass 0 – Transmission System Impacts with No Enhancements – OVEC

The following table identifies significant **OVEC** thermal constraints without any enhancements to the transmission system.

T			Thermal Lo	oadings (%)			
AREA	Limiting Element	Rating (MVA)	Without Request	With Request	Contingency	Scenario	Project
OVEC	None Identified	-	-	-	-	-	—

Scenario Explanations:

Table IV.7.2. Pass 1 – Potential Future Transmission System Impacts – OVEC

The following table depicts thermal loadings of **OVEC** transmission facilities that could become potential constraints in future years or with different queuing assumptions, but are not overloaded in the study year with all proposed enhancements to the transmission system.

			Thermal L	oadings (%)			
AREA	Limiting Element	Rating (MVA)	Without Request	With Request	Contingency	Scenario	Project
OVEC	None Identified				-		

Scenario Explanations:

Table IV.7.3. Potential Solutions for Identified Problems – OVEC

The following table lists any potential solutions that were identified to address the attributable constraints based on the assumptions used in this study. It must be noted that changes to the load forecast, and/or changes in the expansion plan could occur, and would impact the results of this study. In addition, the currently projected improvements to the transmission system were modeled in the cases. Changes to system conditions and/or the transmission expansion plans could also impact the results of this study.

Item	Potential Solution		Planning Level Cost Estimate
	None Required		
	OVEC TOTAL (\$2017)		\$0 ⁽¹⁾

Final Results

PowerSouth Balancing Authority (PS) Results

Study Structure and Assumptions

Transfer Sensitivity	Amount	Source	Sink	Year					
TVA to PJM	500 MW	TVA	PJM	2022					
Load Flow Cases									
2017 Seri	es Version 2 SERTF	PModels: Winte	er Peak						

Transmission System Impacts

The following tables below identify any constraints attributable to the requested transfer for the contingency and scenario that resulted in the most significant loadings for the conditions studied. Other unit out scenarios or contingencies may also result in constraints to these or other facilities.

Table IV.8.1. Pass 0 – Transmission System Impacts with No Enhancements – PS

The following table identifies significant **PS** thermal constraints without any enhancements to the transmission system.

			Thermal L	oadings (%)			
AREA	Limiting Element	Rating (MVA)	Without Request	With Request	Contingency	Scenario	Project
PS	None Identified	-	-	-	-	-	—

Scenario Explanations:

Table IV.8.2. Pass 1 – Potential Future Transmission System Impacts – PS

The following table depicts thermal loadings of **PS** transmission facilities that could become potential constraints in future years or with different queuing assumptions, but are not overloaded in the study year with all proposed enhancements to the transmission system.

AREA Limiting Element Rating (MVA) Without Request With Contingency	Scenario	Project
PS None Identified		

Scenario Explanations:

Table IV.8.3. Potential Solutions for Identified Problems – PS

The following table lists any potential solutions that were identified to address the attributable constraints based on the assumptions used in this study. It must be noted that changes to the load forecast, and/or changes in the expansion plan could occur, and would impact the results of this study. In addition, the currently projected improvements to the transmission system were modeled in the cases. Changes to system conditions and/or the transmission expansion plans could also impact the results of this study.

Item	Potential Solution	Estimated Need Date	Planning Level Cost Estimate
	None Required		
	PS TOTAL (\$2017)		\$0 ⁽¹⁾

Final Results

Southern Balancing Authority (SBAA) Results

Study Structure and Assumptions

Transfer Sensitivity	Amount	Source	Sink	Year						
TVA to PJM	500 MW	TVA	PJM	2022						
Load Flow Cases										
2017 Seri	es Version 2 SERTF	PModels: Winte	er Peak							

Transmission System Impacts

The following tables below identify any constraints attributable to the requested transfer for the contingency and scenario that resulted in the most significant loadings for the conditions studied. Other unit out scenarios or contingencies may also result in constraints to these or other facilities.

Table IV.9.1. Pass 0 – Transmission System Impacts with No Enhancements – SBAA

The following table identifies significant **SBAA** thermal constraints without any enhancements to the transmission system.

			Thermal L	oadings (%)			
AREA	Limiting Element	Rating (MVA)	Without Request	With Request	Contingency	Scenario	Project
SBAA	None Identified						

Scenario Explanations:

Table IV.9.2. Pass 1 – Potential Future Transmission System Impacts – SBAA

The following table depicts thermal loadings of **SBAA** transmission facilities that could become potential constraints in future years or with different queuing assumptions, but are not overloaded in the study year with all proposed enhancements to the transmission system.

			Thermal Lo	oadings (%)			
AREA	Limiting Element	Rating (MVA)	Without Request	With Request	Contingency	Scenario	Project
SBAA	None Identified						

Scenario Explanations:

Economic Planning Studies Final Results

Table IV.9.3. Potential Solutions for Identified Problems – SBAA

The following table lists any potential solutions that were identified to address the attributable constraints based on the assumptions used in this study. It must be noted that changes to the load forecast, and/or changes in the expansion plan could occur, and would impact the results of this study. In addition, the currently projected improvements to the transmission system were modeled in the cases. Changes to system conditions and/or the transmission expansion plans could also impact the results of this study.

ltem	Potential Solution		Planning Level Cost Estimate
	None Required		
	SBAA TOTAL (\$2017)		\$0 ⁽¹⁾

Final Results

Tennessee Valley Authority Balancing Authority (TVA) Results

Study Structure and Assumptions

Transfer Sensitivity	Amount	Source	Sink	Year					
TVA to PJM	500 MW	TVA	PJM	2022					
Load Flow Cases									
2017 Seri	es Version 2 SERTF	P Models: Winte	er Peak						

Transmission System Impacts

The following tables below identify any constraints attributable to the requested transfer for the contingency and scenario that resulted in the most significant loadings for the conditions studied. Other unit out scenarios or contingencies may also result in constraints to these or other facilities.

Table IV.10.1. Pass 0 – Transmission System Impacts with No Enhancements – TVA

The following table identifies significant **TVA** thermal constraints without any enhancements to the transmission system.

	Thermal Loadings (%)						
AREA	Limiting Element	Rating (MVA)	Without Request	With Request	Contingency	Scenario	Project
TVA	None Identified	-	-	-	-	-	—

Scenario Explanations:

Final Results

Table IV.10.2. Pass 1 – Potential Future Transmission System Impacts – TVA

The following table depicts thermal loadings of **TVA** transmission facilities that could become potential constraints in future years or with different queuing assumptions, but are not overloaded in the study year with all proposed enhancements to the transmission system.

				oadings (%)			
AREA	Limiting Element	Rating (MVA)	Without Request	With Request	Contingency	Scenario	Project
TVA	360331 5BOWLING GRN 161 - 360332 5E BOWLGREEN 161	387.1	94.5	97.3	360043 - 340624 & 360043 - 361032 & 360043 - 361471	3	
TVA	360072 5WILSON TN 161 - 361020 5GLADEVL TP 161	234.5	91.0	95.0	360352 – 360072	1	
TVA	360453 5LAFOLLET TN 161 - 360455 5NORRIS HP 161	308.4	91.0	95.0	360102 - 360106 & 360102 - 242521 & 360102 - 324073	4	
TVA	360093 8BULL RUN FP 500 - 360097 8VOLUNTEER 500	2598.1	86.0	90.0	360097 - 360085	2	
TVA	360453 5LAFOLLET TN 161 - 360455 5NORRIS HP 161	308.4	86.0	90.0	360102 - 360097	2	

Scenario Explanations:

1. Gallatin FP Unit 1 Offline + Load U1 + 161kV/24kV Transformer, Winter Peak Case

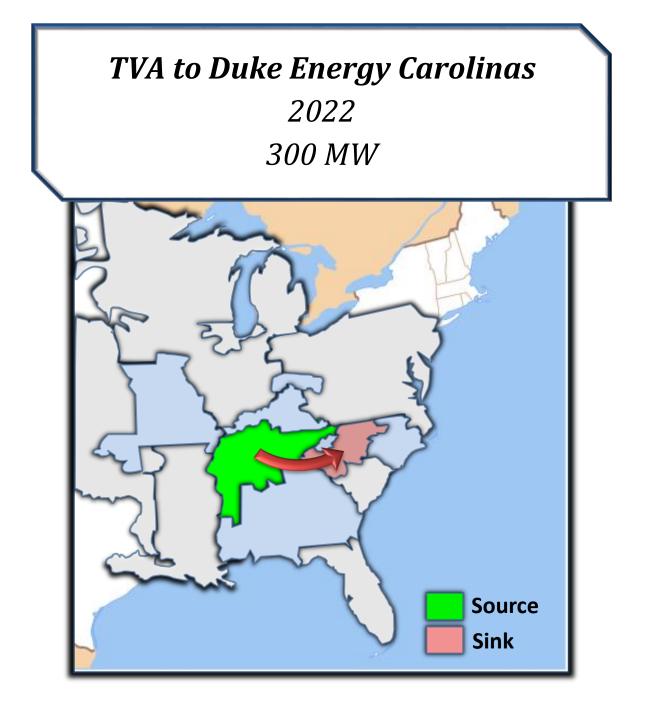
2. John Sevier Unit 4 Offline, Winter Peak Case

3. Switch Shunt at 360043 5 PARADISE FP Offline, Winter Peak Case

4. Winter Peak Case

Table IV.10.3. Potential Solutions for Identified Problems – TVA

The following table lists any potential solutions that were identified to address the attributable constraints based on the assumptions used in this study. It must be noted that changes to the load forecast, and/or changes in the expansion plan could occur, and would impact the results of this study. In addition, the currently projected improvements to the transmission system were modeled in the cases. Changes to system conditions and/or the transmission expansion plans could also impact the results of this study.


ltem	Potential Solution	Estimated Need Date	Planning Level Cost Estimate				
	None Required						
	TVA TOTAL (\$2017)						

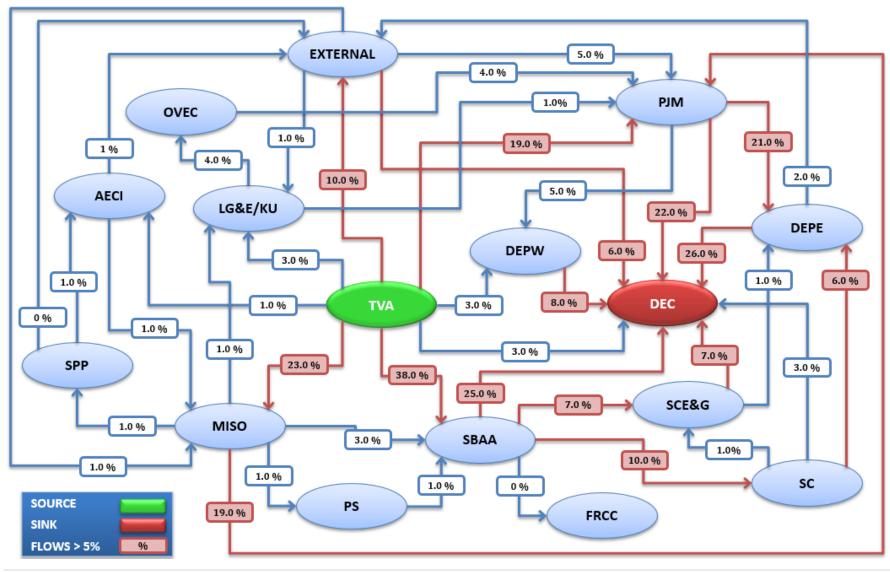
Economic Planning Studies Final Results

2017

V. Study Request 5 Results

Economic Planning Studies Final Results

2017


Table V.1.1. Total Cost Identified by the SERTP Sponsors

Balancing Authority	Planning Level Cost Estimate
Associated Electric Cooperative (AECI)	\$0
Duke Carolinas (DEC)	\$0
Duke Progress East (DEPE)	\$0
Duke Progress West (DEPW)	\$0
Louisville Gas & Electric and Kentucky Utilities (LG&E/KU)	\$0
Ohio Valley Electric Cooperative (OVEC)	\$0
PowerSouth (PS)	\$0
Southern (SBAA)	\$0
Tennessee Valley Authority (TVA)	\$0
TOTAL (\$2017)	\$0

Southeastern Regional TRANSMISSION PLANNING Economic Planning Studies Final Results

Diagram V.1.1. Transfer Flow Diagram (% of Total Transfer)

Final Results

Associated Electric Cooperative Balancing Authority (AECI) Results

Study Structure and Assumptions

Transfer Sensitivity	Amount	Source	Sink	Year					
TVA to DEC	300 MW	TVA	DEC	2022					
Load Flow Cases									
2017 Serie	s Version 2 SERTP	Models: Summ	er Peak						

Transmission System Impacts

The following tables below identify any constraints attributable to the requested transfer for the contingency and scenario that resulted in the most significant loadings for the conditions studied. Other unit out scenarios or contingencies may also result in constraints to these or other facilities.

Table V.2.1. Pass 0 – Transmission System Impacts with No Enhancements – AECI

The following table identifies significant *AECI* thermal constraints without any enhancements to the transmission system.

			Thermal Loadings (%)				
AREA	Limiting Element	Rating (MVA)	Without Request	With Request	Contingency	Scenario	Project
AECI	None Identified	-	-	-	-	-	_

Scenario Explanations:

Table V.2.2. Pass 1 – Potential Future Transmission System Impacts – AECI

The following table depicts thermal loadings of *AECI* transmission facilities that could become potential constraints in future years or with different queuing assumptions, but are not overloaded in the study year with all proposed enhancements to the transmission system.

The			Thermal Lo	oadings (%)			
AREA	Limiting Element	Rating (MVA)	Without Request	With Request	Contingency	Scenario	Project
AECI	None Identified				-		

Scenario Explanations:

Table V.2.3. Potential Solutions for Identified Problems – AECI

The following table lists any potential solutions that were identified to address the attributable constraints based on the assumptions used in this study. It must be noted that changes to the load forecast, and/or changes in the expansion plan could occur, and would impact the results of this study. In addition, the currently projected improvements to the transmission system were modeled in the cases. Changes to system conditions and/or the transmission expansion plans could also impact the results of this study.

ltem	Potential Solution	Estimated Need Date	Planning Level Cost Estimate				
	None Required						
	AECI TOTAL (\$2017)						

Final Results

Duke Carolinas Balancing Authority (DEC) Results

Study Structure and Assumptions

Transfer Sensitivity	Amount	Source	Sink	Year					
TVA to DEC	300 MW	TVA	DEC	2022					
Load Flow Cases									
2017 Serie	s Version 2 SERTP	Models: Summ	er Peak						

Transmission System Impacts

The following tables below identify any constraints attributable to the requested transfer for the contingency and scenario that resulted in the most significant loadings for the conditions studied. Other unit out scenarios or contingencies may also result in constraints to these or other facilities.

Table V.3.1. Pass 0 – Transmission System Impacts with No Enhancements – DEC

The following table identifies significant **DEC** thermal constraints without any enhancements to the transmission system.

				Thermal Loadings (%)				
A	AREA	Limiting Element	Rating (MVA)	Without Request	With Request	Contingency	Scenario	Project
	DEC	None Identified						

Scenario Explanations:

Table V.3.2. Pass 1 – Potential Future Transmission System Impacts – DEC

The following table depicts thermal loadings of **DEC** transmission facilities that could become potential constraints in future years or with different queuing assumptions, but are not overloaded in the study year with all proposed enhancements to the transmission system.

		Thermal Loadings (%)		oadings (%)			
AREA	Limiting Element	Rating (MVA)	Without Request	With Request	Contingency	Scenario	Project
DEC	None Identified				-		

Scenario Explanations:

Table V.3.3. Potential Solutions for Identified Problems – DEC

The following table lists any potential solutions that were identified to address the attributable constraints based on the assumptions used in this study. It must be noted that changes to the load forecast, and/or changes in the expansion plan could occur, and would impact the results of this study. In addition, the currently projected improvements to the transmission system were modeled in the cases. Changes to system conditions and/or the transmission expansion plans could also impact the results of this study.

ltem	Potential Solution	Estimated Need Date	Planning Level Cost Estimate
	None Required		
	DEC TOTAL (\$2017)		\$0 ⁽¹⁾

Final Results

Duke Progress East Balancing Authority (DEPE) Results

Study Structure and Assumptions

Transfer Sensitivity	Amount	Source	Sink	Year			
TVA to DEC	300 MW	TVA	DEC	2022			
Load Flow Cases							
2017 Serie	s Version 2 SERTP	Models: Summ	er Peak				

Transmission System Impacts

The following tables below identify any constraints attributable to the requested transfer for the contingency and scenario that resulted in the most significant loadings for the conditions studied. Other unit out scenarios or contingencies may also result in constraints to these or other facilities.

Table V.4.1. Pass 0 – Transmission System Impacts with No Enhancements – DEPE

The following table identifies significant *DEPE* thermal constraints without any enhancements to the transmission system.

			Thermal Loadings (%)				
AREA	Limiting Element	Rating (MVA)	Without Request	With Request	Contingency	Scenario	Project
DEPE	None Identified						

Scenario Explanations:

Table V.4.2. Pass 1 – Potential Future Transmission System Impacts – DEPE

The following table depicts thermal loadings of **DEPE** transmission facilities that could become potential constraints in future years or with different queuing assumptions, but are not overloaded in the study year with all proposed enhancements to the transmission system.

		Thermal		oadings (%)			
AREA	Limiting Element	Rating (MVA)	Without Request	With Request	Contingency	Scenario	Project
DEPE	None Identified				-		

Scenario Explanations:

Table V.4.3. Potential Solutions for Identified Problems – DEPE

The following table lists any potential solutions that were identified to address the attributable constraints based on the assumptions used in this study. It must be noted that changes to the load forecast, and/or changes in the expansion plan could occur, and would impact the results of this study. In addition, the currently projected improvements to the transmission system were modeled in the cases. Changes to system conditions and/or the transmission expansion plans could also impact the results of this study.

Item	Potential Solution	Estimated Need Date	Planning Level Cost Estimate
	None Required		
	DEPE TOTAL (\$2017)		\$0 ⁽¹⁾

Final Results

Duke Progress West (DEPW) Results

Study Structure and Assumptions

Transfer Sensitivity	Amount	Source	Sink	Year			
TVA to DEC	300 MW	TVA	DEC	2022			
Load Flow Cases							
2017 Serie	es Version 2 SERTP	Models: Summ	er Peak				

Transmission System Impacts

The following tables below identify any constraints attributable to the requested transfer for the contingency and scenario that resulted in the most significant loadings for the conditions studied. Other unit out scenarios or contingencies may also result in constraints to these or other facilities.

Table V.5.1. Pass 0 – Transmission System Impacts with No Enhancements – DEPW

The following table identifies significant *DEPW* thermal constraints without any enhancements to the transmission system.

			Thermal Loadings (%)				
AREA	Limiting Element	Rating (MVA)	Without Request	With Request	Contingency	Scenario	Project
DEPW	None Identified	-	_	-	-	-	_

Scenario Explanations:

Table V.5.2. Pass 1 – Potential Future Transmission System Impacts – DEPW

The following table depicts thermal loadings of **DEPW** transmission facilities that could become potential constraints in future years or with different queuing assumptions, but are not overloaded in the study year with all proposed enhancements to the transmission system.

AREA Limiting Element Rating Without With Contingency Scenario	
AREA Limiting Element Instange Instange Instange Instange Contingency Scenario	Project
DEPW None Identified	

Scenario Explanations:

Table V.5.3. Potential Solutions for Identified Problems – DEPW

The following table lists any potential solutions that were identified to address the attributable constraints based on the assumptions used in this study. It must be noted that changes to the load forecast, and/or changes in the expansion plan could occur, and would impact the results of this study. In addition, the currently projected improvements to the transmission system were modeled in the cases. Changes to system conditions and/or the transmission expansion plans could also impact the results of this study.

ltem	Potential Solution	ion Estimated Need Date						
	None Required		\$0					
	DEPW TOTAL (\$2017)							

Louisville Gas & Electric and Kentucky Utilities Balancing Authority (LG&E/KU) Results

Study Structure and Assumptions

Transfer Sensitivity	Transfer Sensitivity Amount Source Sink Year									
TVA to DEC 300 MW TVA DEC 2022										
Load Flow Cases										
2017 Series Version 2 SERTP Models: Summer Peak										

Transmission System Impacts

The following tables below identify any constraints attributable to the requested transfer for the contingency and scenario that resulted in the most significant loadings for the conditions studied. Other unit out scenarios or contingencies may also result in constraints to these or other facilities.

Table V.6.1. Pass 0 – Transmission System Impacts with No Enhancements – LG&E/KU

The following table identifies significant *LG&E/KU* thermal constraints without any enhancements to the transmission system.

			Thermal L	oadings (%)			
AREA	Limiting Element	Rating (MVA)	Without Request	With Request	Contingency	Scenario	Project
LG&E/KU	None Identified				-		

Scenario Explanations:

Table V.6.2. Pass 1 – Potential Future Transmission System Impacts – LG&E/KU

The following table depicts thermal loadings of *LG&E/KU* transmission facilities that could become potential constraints in future years or with different queuing assumptions, but are not overloaded in the study year with all proposed enhancements to the transmission system.

AREALimiting ElementRating (MVA)With RequestWith RequestContingencyScenarioProjectLG&E/KUNone Identified			Thermal L	oadings (%)			
LG&E/KU None Identified		Limiting Element			Contingency	Scenario	Project
	LG&E/KU	None Identified	 		-		

Scenario Explanations:

Table V.6.3. Potential Solutions for Identified Problems – LG&E/KU

The following table lists any potential solutions that were identified to address the attributable constraints based on the assumptions used in this study. It must be noted that changes to the load forecast, and/or changes in the expansion plan could occur, and would impact the results of this study. In addition, the currently projected improvements to the transmission system were modeled in the cases. Changes to system conditions and/or the transmission expansion plans could also impact the results of this study.

Item	Potential Solution	Potential Solution Estimated Need Date						
	None Required							
	LG&E/KU TOTAL (\$2017)							

Final Results

Ohio Valley Electric Corporation Balancing Authority (OVEC) Results

Study Structure and Assumptions

Transfer Sensitivity	Amount	Source	Sink	Year						
TVA to DEC	300 MW	TVA	DEC	2022						
	Load Flow Cases									
2017 Serie	2017 Series Version 2 SERTP Models: Summer Peak									

Transmission System Impacts

The following tables below identify any constraints attributable to the requested transfer for the contingency and scenario that resulted in the most significant loadings for the conditions studied. Other unit out scenarios or contingencies may also result in constraints to these or other facilities.

Table V.7.1. Pass 0 – Transmission System Impacts with No Enhancements – OVEC

The following table identifies significant **OVEC** thermal constraints without any enhancements to the transmission system.

			Thermal L	oadings (%)			
AREA	Limiting Element	Rating (MVA)	Without Request	With Request	Contingency	Scenario	Project
OVEC	None Identified				-		

Scenario Explanations:

Table V.7.2. Pass 1 – Potential Future Transmission System Impacts – OVEC

The following table depicts thermal loadings of **OVEC** transmission facilities that could become potential constraints in future years or with different queuing assumptions, but are not overloaded in the study year with all proposed enhancements to the transmission system.

				Thermal Lo	oadings (%)			
	REA	Limiting Element	Rating (MVA)	Without Request	With Request	Contingency	Scenario	Project
0	VEC	None Identified				-		

Scenario Explanations:

Table V.7.3. Potential Solutions for Identified Problems – OVEC

The following table lists any potential solutions that were identified to address the attributable constraints based on the assumptions used in this study. It must be noted that changes to the load forecast, and/or changes in the expansion plan could occur, and would impact the results of this study. In addition, the currently projected improvements to the transmission system were modeled in the cases. Changes to system conditions and/or the transmission expansion plans could also impact the results of this study.

ltem	Potential Solution	Potential Solution Estimated Need Date						
	None Required		Planning Level Cost Estimate \$0 ⁽¹⁾					
	OVEC TOTAL (\$2017)							

Final Results

PowerSouth Balancing Authority (PS) Results

Study Structure and Assumptions

Transfer Sensitivity	Amount	Source	Sink	Year							
TVA to DEC	300 MW	TVA	DEC	2022							
	Load Flow Cases										
2017 Serie	s Version 2 SERTP	2017 Series Version 2 SERTP Models: Summer Peak									

Transmission System Impacts

The following tables below identify any constraints attributable to the requested transfer for the contingency and scenario that resulted in the most significant loadings for the conditions studied. Other unit out scenarios or contingencies may also result in constraints to these or other facilities.

Table V.8.1. Pass 0 – Transmission System Impacts with No Enhancements – PS

The following table identifies significant **PS** thermal constraints without any enhancements to the transmission system.

			Thermal Lo	oadings (%)			
AREA	Limiting Element	Rating (MVA)	Without Request	With Request	Contingency	Scenario	Project
PS	None Identified						

Scenario Explanations:

Table V.8.2. Pass 1 – Potential Future Transmission System Impacts – PS

The following table depicts thermal loadings of **PS** transmission facilities that could become potential constraints in future years or with different queuing assumptions, but are not overloaded in the study year with all proposed enhancements to the transmission system.

			Thermal Lo	oadings (%)			
AREA	Limiting Element	Rating (MVA)	Without Request	With Request	Contingency	Scenario	Project
PS	None Identified				-		

Scenario Explanations:

Table V.8.3. Potential Solutions for Identified Problems – PS

The following table lists any potential solutions that were identified to address the attributable constraints based on the assumptions used in this study. It must be noted that changes to the load forecast, and/or changes in the expansion plan could occur, and would impact the results of this study. In addition, the currently projected improvements to the transmission system were modeled in the cases. Changes to system conditions and/or the transmission expansion plans could also impact the results of this study.

ltem	Potential Solution	Estimated Need Date	Planning Level Cost Estimate				
	None Required						
	PS TOTAL (\$2017)						

Final Results

Southern Balancing Authority (SBAA) Results

Study Structure and Assumptions

Transfer Sensitivity	Amount	Source	Sink	Year				
TVA to DEC	300 MW TVA		DEC	2022				
Load Flow Cases								
2017 Series Version 2 SERTP Models: Summer Peak								

Transmission System Impacts

The following tables below identify any constraints attributable to the requested transfer for the contingency and scenario that resulted in the most significant loadings for the conditions studied. Other unit out scenarios or contingencies may also result in constraints to these or other facilities.

Table V.9.1. Pass 0 – Transmission System Impacts with No Enhancements – SBAA

The following table identifies significant **SBAA** thermal constraints without any enhancements to the transmission system.

			Thermal Lo	oadings (%)			
AREA	Limiting Element	Rating (MVA)	Without Request	With Request	Contingency	Scenario	Project
SBAA	None Identified						

Scenario Explanations:

Table V.9.2. Pass 1 – Potential Future Transmission System Impacts – SBAA

The following table depicts thermal loadings of **SBAA** transmission facilities that could become potential constraints in future years or with different queuing assumptions, but are not overloaded in the study year with all proposed enhancements to the transmission system.

AREA Limiting Element Rating (MVA) Without With Request Contingence	y Scenario Project
SBAA None Identified	

Scenario Explanations:

Economic Planning Studies Final Results

Table V.9.3. Potential Solutions for Identified Problems – SBAA

The following table lists any potential solutions that were identified to address the attributable constraints based on the assumptions used in this study. It must be noted that changes to the load forecast, and/or changes in the expansion plan could occur, and would impact the results of this study. In addition, the currently projected improvements to the transmission system were modeled in the cases. Changes to system conditions and/or the transmission expansion plans could also impact the results of this study.

ltem	Potential Solution	Estimated Need Date	Planning Level Cost Estimate			
	None Required					
	SBAA TOTAL (\$2017)					

Final Results

Tennessee Valley Authority Balancing Authority (TVA) Results

Study Structure and Assumptions

Transfer Sensitivity	Amount	Source	Sink	Year				
TVA to DEC	300 MW	TVA	DEC	2022				
Load Flow Cases								
2017 Series Version 2 SERTP Models: Summer Peak								

Transmission System Impacts

The following tables below identify any constraints attributable to the requested transfer for the contingency and scenario that resulted in the most significant loadings for the conditions studied. Other unit out scenarios or contingencies may also result in constraints to these or other facilities.

Table V.10.1. Pass 0 – Transmission System Impacts with No Enhancements – TVA

The following table identifies significant **TVA** constraints without any enhancements to the transmission system.

			Thermal Lo	oadings (%)			
AREA	Limiting Element	Rating (MVA)	Without Request	With Request	Contingency	Scenario	Project
TVA	None Identified						

Scenario Explanations:

Table V.10.2. Pass 1 – Potential Future Transmission System Impacts – TVA

The following table depicts thermal loadings of **TVA** transmission facilities that could become potential constraints in future years or with different queuing assumptions, but are not overloaded in the study year with all proposed enhancements to the transmission system.

			Thermal L	oadings (%)			
AREA	Limiting Element	Rating (MVA)	Without Request	With Request	Contingency	Scenario	Project
TVA	None Identified						
Scenario Exp	lanations:						

Table V.10.3. Potential Solutions for Identified Problems – TVA

The following table lists any potential solutions that were identified to address the attributable constraints based on the assumptions used in this study. It must be noted that changes to the load forecast, and/or changes in the expansion plan could occur, and would impact the results of this study. In addition, the currently projected improvements to the transmission system were modeled in the cases. Changes to system conditions and/or the transmission expansion plans could also impact the results of this study.

ltem	Potential Solution	Estimated Need Date	Planning Level Cost Estimate				
	None Required						
	TVA TOTAL (\$2017)						