2019 Economic Planning Studies

SERTP Southeastern Regional Transmission Planning

Southeastern

TRANSMISSION PLANNING

Regional

Table of Contents

Overview o	f Economic Planning Studies1
Section I:	Study Request 1 Results
Section II:	Study Request 2 Results
Section III:	Study Request 3 Results
Section IV:	Study Request 4 Results
Section V:	Study Request 5 Results

Overview of Economic Planning Studies

Executive Summary

The Regional Planning Stakeholder Group ("RPSG") identified five (5) economic planning studies to be evaluated under the Southeastern Regional Transmission Planning ("SERTP") process. The SERTP Sponsors have performed analyses to assess potential constraints on the transmission systems of the participating transmission owners for the stakeholder requested economic planning studies selected by the Regional Planning Stakeholder Group ("RPSG"). The assessments include the identification of potentially limiting facilities, the impact of the transfers on these facilities, and the contingency conditions causing the limitations. The assessments also identify potential transmission enhancements within the footprint of the participating transmission owners necessary to accommodate the economic planning study requests, planning-level cost estimates, and the projected need-date for projects to accommodate the economic planning study requests. The information contained in this report does not represent a commitment to proceed with the recommended enhancements nor implies that the recommended enhancements could be implemented by the study dates. The assessment cases model the currently projected improvements to the transmission system. However, changes to system conditions and/or the transmission system expansion plans could also impact the results of this study. Planning staff of the participating transmission owners performed the assessments and the results are summarized in this report.

Study Assumptions

The specific assumptions selected for these evaluations were:

- The load levels evaluated were Summer Peak unless otherwise indicated below. Additional load levels were evaluated as appropriate.
- Each request was evaluated for the year identified below, as selected by the RPSG
- The following economic planning studies were assessed:

1) Southern BAA to Santee Cooper Border – 500 MW

• Year: 2020

Southeastern

TRANSMISSION PLANNING

Regional

- Load Level: Summer
- **Type of Transfer:** Generation to Generation
- Source: Generation scale within Southern BAA
- Sink: Generation scale within Santee Cooper

2) Duke Energy Carolinas and to Santee Cooper Border – 500 MW

- Year: 2020
- Load Level: Summer
- Type of Transfer: Generation to Generation
- **Source:** Generation scale within Duke Energy Carolinas
- **Sink:** Generation scale within Santee Cooper

3) Southern BAA to Santee Cooper Border – 800 MW

- Year: 2020
- Load Level: Summer
- Type of Transfer: Generation to Generation
- Source: Generation scale within Southern BAA
- Sink: Generation scale within Santee Cooper

4) Duke Energy Carolinas to Santee Cooper Border – 500 MW

- Year: 2024
- Load Level: Winter
- **Type of Transfer:** Generation to Generation
- Source: Generation scale within Duke Energy Carolinas
- Sink: Generation scale within Santee Cooper

5) Southern BAA to Santee Cooper Border – 1000 MW

- Year: 2024
- Load Level: Winter
- Type of Transfer: Generation to Generation
- Source: Generation scale within Southern BAA
- Sink: Generation scale within Santee Cooper

Case Development

Southeastern

TRANSMISSION PLANNING

Regional

• For all evaluations, the **2019 Series Version 2 SERTP Regional Models** were used as a starting point load flow cases for the analysis of the Economic Planning Scenarios.

Study Criteria

The study criteria with which results were evaluated included the following reliability elements:

- NERC Reliability Standards
- Individual company criteria (voltage, thermal, stability, and short circuit as applicable)

Methodology

Initially, power flow analyses were performed based on the assumption that thermal limits were the controlling limit for the reliability plan. Voltage, stability, and short circuit studies were performed if circumstances warranted.

Technical Analysis and Study Results

The technical analysis was performed in accordance with the study methodology. Results from the technical analysis were reported throughout the study area to identify transmission elements approaching their limits such that all participating transmission owners and stakeholders would be aware of any potential issues and, as such, suggest appropriate solutions to address the potential issues if necessary. The SERTP reported, at a minimum, results on elements of 115 kV and greater within the participating transmission owners' footprint based on:

- Thermal loadings greater than 90% for facilities that are negatively impacted by the proposed transfers and change by +5% of applicable rating with the addition of the transfer(s)
- Voltages appropriate to each participating transmission owner's planning criteria (with potential solutions if criteria were violated)

Assessment and Problem Identification

The participating transmission owners ran assessments to identify any constraints within the participating transmission owners' footprint as a result of the economic planning study requests. Each participating transmission owner applied their respective reliability criteria for its facilities and any constraints identified were documented and reviewed by each participating transmission owner.

Solution Development

Southeastern

TRANSMISSION PLANNING

Regional

- The participating transmission owners, with input from the stakeholders, will develop potential solution alternatives due to the economic planning studies requested by the RPSG.
- The participating transmission owners will test the effectiveness of the potential solution alternatives using the same cases, methodologies, assumptions and criteria described above.
- The participating transmission owners will develop rough, planning-level cost estimates and in-service dates for the selected solution alternatives.

Report on the Study Results

The participating transmission owners compiled all the study results and prepared a report for review by the stakeholders. The report contains the following:

- A description of the study approach and key assumptions for the Economic Planning Scenarios
- For each economic planning study request, the results of that study including:
 - 1. Limit(s) to the transfer
 - 2. Selected solution alternatives to address the limit(s)
 - 3. Rough, planning-level cost estimates and in-service dates for the selected transmission solution alternatives

2019 Economic Planning Studies

I. Study Request 1 Results

Southeastern

TRANSMISSION PLANNING

Regional

Southern BAA to Santee Cooper 2020 500 MW

Table I.1.1. Total Cost Identified by the SERTP Sponsors

Balancing Authority Area	Planning Level Cost Estimate
Associated Electric Cooperative (AECI)	\$0
Duke Carolinas (DEC)	\$11,000,000
Duke Progress East (DEPE)	\$0
Duke Progress West (DEPW)	\$0
Louisville Gas & Electric and Kentucky Utilities (LG&E/KU)	\$0
PowerSouth (PS)	\$0
Southern (SBAA)	\$0
Tennessee Valley Authority (TVA)	\$0
TOTAL (\$2019)	\$11,000,000

2019 Economic Planning Studies

TRANSMISSION PLANNING

Southeastern

Regional

Diagram I.1.1. Transfer Flow Diagram (% of Total Transfer)

Associated Electric Cooperative Balancing Authority Area (AECI) Results

Study Structure and Assumptions

Southeastern

TRANSMISSION PLANNING

Regional

Transfer Sensitivity	Amount	Source	Sink	Year				
Southern BAA to Santee Cooper	500 MW	Southern BAA	Santee Cooper	2020				
Load Flow Cases								
2019 Series Version 2 SERTP Models: Summer Peak								

Transmission System Impacts

The following tables below identify any constraints attributable to the requested transfer for the contingency and scenario that resulted in the most significant loadings for the conditions studied. Other unit out scenarios or contingencies may also result in constraints to these or other facilities.

Table I.2.1. Pass 0 – Transmission System Impacts with No Enhancements – AECI

The following table identifies significant **AECI** thermal constraints without any enhancements to the transmission system.

			Thermal Loadings (%)				
AREA	Limiting Element	Rating (MVA)	Without Request	With Request	Contingency	Scenario	Project
AECI	None Identified				-		

Scenario Explanations:

Table I.2.2. Pass 1 – Potential Future Transmission System Impacts – AECI

The following table depicts thermal loadings of **AECI** transmission facilities that could become potential constraints in future years or with different queuing assumptions but are not overloaded in the study year with all proposed enhancements to the transmission system.

			Thermal Loadings (%)				
AREA	Limiting Element	Rating (MVA)	Without Request	With Request	Contingency	Scenario	Project
AECI	None Identified						

Scenario Explanations:

Table I.2.3. Potential Solutions for Identified Problems – AECI

Southeastern

TRANSMISSION PLANNING

Regional

The following table lists any potential solutions that were identified to address the attributable constraints based on the assumptions used in this study. It must be noted that changes to the load forecast, and/or changes in the expansion plan could occur and would impact the results of this study. In addition, the currently projected improvements to the transmission system were modeled in the cases. Changes to system conditions and/or the transmission expansion plans could also impact the results of this study.

Item	Potential Solution	Estimated Need Date	Planning Level Cost Estimate
	None Required		
	AECI TOTAL (\$2019)		\$0 ⁽¹⁾

Duke Carolinas Balancing Authority Area (DEC) Results

Study Structure and Assumptions

Southeastern

TRANSMISSION PLANNING

Regional

Transfer Sensitivity	Amount	Source	Sink	Year				
Southern BAA to Santee Cooper	500 MW	Southern BAA	Santee Cooper	2020				
Load Flow Cases								
2019 Series Version 2 SERTP Models: Summer Peak								

Transmission System Impacts

The following tables below identify any constraints attributable to the requested transfer for the contingency and scenario that resulted in the most significant loadings for the conditions studied. Other unit out scenarios or contingencies may also result in constraints to these or other facilities.

Table I.3.1. Pass 0 – Transmission System Impacts with No Enhancements – DEC

The following table identifies significant **DEC** thermal constraints without any enhancements to the transmission system.

			Thermal L	oadings (%)			
AREA	Limiting Element	Rating (MVA)	Without Request	With Request	Contingency	Scenario	Project
DEC	Bush River Tie – Saluda Hydro 100kV T.L.	79	101.5(1)	107.4	Greenwood County – Newberry 230kV T.L.	1	P1
DEC	Laurens Tie – Bush River Tie 100kV T.L.	65	93.9	100.1	Greenwood County – Newberry 230kV T.L.	1	P2

(1) A current operating procedure is sufficient to alleviate this identified constraint without the addition of the proposed transfer. However, the additional transfer exacerbates the loading on this transmission facility such that the operating procedure becomes insufficient.

Scenario Explanations:

1. VC Summer (SCEG) Offline

Table I.3.2. Pass 1 – Potential Future Transmission System Impacts – DEC

The following table depicts thermal loadings of **DEC** transmission facilities that could become potential constraints in future years or with different queuing assumptions but are not overloaded in the study year with all proposed enhancements to the transmission system.

			Thermal Loadings (%)				
AREA	Limiting Element	Rating (MVA)	Without Request	With Request	Contingency	Scenario	Project
DEC	None Identified						

Scenario Explanations:

TRANSMISSION PLANNING

Southeastern

Regional

Table I.3.3. Potential Solutions for Identified Problems – DEC

The following table lists any potential solutions that were identified to address the attributable constraints based on the assumptions used in this study. It must be noted that changes to the load forecast, and/or changes in the expansion plan could occur and would impact the results of this study. In addition, the currently projected improvements to the transmission system were modeled in the cases. Changes to system conditions and/or the transmission expansion plans could also impact the results of this study.

Item	Potential Solution	Estimated Need Date	Planning Level Cost Estimate		
P1	 Bush River Tie – Saluda Hydro 100kV double circuit T.L. Rebuild the 2.7 miles of Bush River Tie – Saluda Hydro 100kV double circuit transmission line with 954 ACSR conductors rated to 120°C 	Summer 2020	\$4,900,000		
P2	 Laurens Tie – Bush River Tie 100kV double circuit T.L. Rebuild approximately 2.8 miles of Laurens Tie – Bush River Tie 100kV double circuit transmission line with 954 ACSR conductors rated to 120°C. 	Summer 2020	\$5,100,000		
	DEC TOTAL (\$2019)				

2019 Economic Planning Studies

Southeastern Regional TRANSMISSION PLANNING

Duke Progress East Balancing Authority Area (DEPE) Results

Study Structure and Assumptions

Southeastern

TRANSMISSION PLANNING

Regional

Transfer Sensitivity	Amount	Source	Sink	Year				
Southern BAA to Santee Cooper	500 MW	Southern BAA	Santee Cooper	2020				
Load Flow Cases								
2019 Series Version 2 SERTP Models: Summer Peak								

Transmission System Impacts

The following tables below identify any constraints attributable to the requested transfer for the contingency and scenario that resulted in the most significant loadings for the conditions studied. Other unit out scenarios or contingencies may also result in constraints to these or other facilities.

Table I.4.1. Pass 0 – Transmission System Impacts with No Enhancements – DEPE

The following table identifies significant **DEPE** thermal constraints without any enhancements to the transmission system.

		Thermal Loadings (%)					
AREA	Limiting Element	Rating (MVA)	Without Request	With Request	Contingency	Scenario	Project
DEPE	None Identified						

Scenario Explanations:

Table I.4.2. Pass 1 – Potential Future Transmission System Impacts – DEPE

The following table depicts thermal loadings of **DEPE** transmission facilities that could become potential constraints in future years or with different queuing assumptions but are not overloaded in the study year with all proposed enhancements to the transmission system.

			Thermal L	oadings (%)			
AREA	Limiting Element	Rating (MVA)	Without Request	With Request	Contingency	Scenario	Project
DEPE	None Identified						

Scenario Explanations:

Table I.4.3. Potential Solutions for Identified Problems – DEPE

Southeastern

TRANSMISSION PLANNING

Regional

The following table lists any potential solutions that were identified to address the attributable constraints based on the assumptions used in this study. It must be noted that changes to the load forecast, and/or changes in the expansion plan could occur and would impact the results of this study. In addition, the currently projected improvements to the transmission system were modeled in the cases. Changes to system conditions and/or the transmission expansion plans could also impact the results of this study.

Item	Potential Solution	Estimated Need Date	Planning Level Cost Estimate
	None Required		
	DEPE TOTAL (\$2019)		\$0 ⁽¹⁾

Duke Progress West (DEPW) Results

Study Structure and Assumptions

Southeastern

TRANSMISSION PLANNING

Regional

Transfer Sensitivity	Amount	Source	Sink	Year						
Southern BAA to Santee Cooper	500 MW	Southern BAA	Santee Cooper	2020						
	Load Flow Cases									
2019 Series Version 2 SERTP Models: Summer Peak										

Transmission System Impacts

The following tables below identify any constraints attributable to the requested transfer for the contingency and scenario that resulted in the most significant loadings for the conditions studied. Other unit out scenarios or contingencies may also result in constraints to these or other facilities.

Table I.5.1. Pass 0 – Transmission System Impacts with No Enhancements – DEPW

The following table identifies significant **DEPW** thermal constraints without any enhancements to the transmission system.

			Thermal Lo	oadings (%)			
AREA	Limiting Element	Rating (MVA)	Without Request	With Request	Contingency	Scenario	Project
DEPW	None Identified						

Scenario Explanations:

Table I.5.2. Pass 1 – Potential Future Transmission System Impacts – DEPW

The following table depicts thermal loadings of **DEPW** transmission facilities that could become potential constraints in future years or with different queuing assumptions but are not overloaded in the study year with all proposed enhancements to the transmission system.

			Thermal L	oadings (%)			
AREA	Limiting Element	Rating (MVA)	Without Request	With Request	Contingency	Scenario	Project
DEPW	None Identified						

Scenario Explanations:

Table 1.5.3. Potential Solutions for Identified Problems – DEPW

The following table lists any potential solutions that were identified to address the attributable constraints based on the assumptions used in this study. It must be noted that changes to the load forecast, and/or changes in the expansion plan could occur and would impact the results of this study. In addition, the currently projected improvements to the transmission system were modeled in the cases. Changes to system conditions and/or the transmission expansion plans could also impact the results of this study.

Item	Potential Solution	Estimated Need Date	Planning Level Cost Estimate
	None Required	-	
	DEPW TOTAL (\$2019)		\$0 ⁽¹⁾

Louisville Gas & Electric and Kentucky Utilities Balancing Authority Area (LG&E/KU) Results

Study Structure and Assumptions

Southeastern

TRANSMISSION PLANNING

Regional

Transfer Sensitivity	Amount	Source	Sink	Year							
Southern BAA to Santee Cooper	500 MW	Southern BAA	Santee Cooper	2020							
	Load Flow Cases										
2019 Series Version 2 SERTP Models: Summer Peak											

Transmission System Impacts

The following tables below identify any constraints attributable to the requested transfer for the contingency and scenario that resulted in the most significant loadings for the conditions studied. Other unit out scenarios or contingencies may also result in constraints to these or other facilities.

Table I.6.1. Pass 0 – Transmission System Impacts with No Enhancements – LG&E/KU

The following table identifies significant *LG&E/KU* thermal constraints without any enhancements to the transmission system.

			Thermal Lo	oadings (%)			
AREA	Limiting Element	Rating (MVA)	Without Request	With Request	Contingency	Scenario	Project
LG&E/KU	None Identified				-		

Scenario Explanations:

Table I.6.2. Pass 1 – Potential Future Transmission System Impacts – LG&E/KU

The following table depicts thermal loadings of *LG&E/KU* transmission facilities that could become potential constraints in future years or with different queuing assumptions but are not overloaded in the study year with all proposed enhancements to the transmission system.

			Thermal Lo	oadings (%)			
AREA	Limiting Element	Rating (MVA)	Without Request	With Request	Contingency	Scenario	Project
LG&E/KU	None Identified				-		

Scenario Explanations:

Table I.6.3. Potential Solutions for Identified Problems – LG&E/KU

Southeastern

TRANSMISSION PLANNING

Regional

The following table lists any potential solutions that were identified to address the attributable constraints based on the assumptions used in this study. It must be noted that changes to the load forecast, and/or changes in the expansion plan could occur and would impact the results of this study. In addition, the currently projected improvements to the transmission system were modeled in the cases. Changes to system conditions and/or the transmission expansion plans could also impact the results of this study.

Item	Potential Solution	Estimated Need Date	Planning Level Cost Estimate
	None Required		
	LG&E/KU TOTAL (\$2019)		\$0 ⁽¹⁾

PowerSouth Balancing Authority Area (PS) Results

Study Structure and Assumptions

Transfer Sensitivity	Amount	Source	Sink	Year						
Southern BAA to Santee Cooper	500 MW	Southern BAA	Santee Cooper	2020						
	Load Flow Cases									
2019 Series Version 2 SERTP Models: Summer Peak										

Transmission System Impacts

The following tables below identify any constraints attributable to the requested transfer for the contingency and scenario that resulted in the most significant loadings for the conditions studied. Other unit out scenarios or contingencies may also result in constraints to these or other facilities.

Table I.7.1. Pass 0 – Transmission System Impacts with No Enhancements – PS

The following table identifies significant **PS** thermal constraints without any enhancements to the transmission system.

			Thermal Lo	oadings (%)			
AREA	Limiting Element	Rating (MVA)	Without Request	With Request	Contingency	Scenario	Project
PS	None Identified						

Scenario Explanations:

Table I.7.2. Pass 1 – Potential Future Transmission System Impacts – PS

The following table depicts thermal loadings of **PS** transmission facilities that could become potential constraints in future years or with different queuing assumptions but are not overloaded in the study year with all proposed enhancements to the transmission system.

			Thermal L	oadings (%)			
AREA	Limiting Element	Rating (MVA)	Without Request	With Request	Contingency	Scenario	Project
PS	None Identified						

Scenario Explanations:

Table 1.7.3. Potential Solutions for Identified Problems – PS

Southeastern

TRANSMISSION PLANNING

Regional

The following table lists any potential solutions that were identified to address the attributable constraints based on the assumptions used in this study. It must be noted that changes to the load forecast, and/or changes in the expansion plan could occur and would impact the results of this study. In addition, the currently projected improvements to the transmission system were modeled in the cases. Changes to system conditions and/or the transmission expansion plans could also impact the results of this study.

Item	Potential Solution	Estimated Need Date	Planning Level Cost Estimate
	None Required		
	\$0 ⁽¹⁾		

Southern Balancing Authority Area (SBAA) Results

Study Structure and Assumptions

Transfer Sensitivity	Amount	Source	Sink	Year			
Southern BAA to Santee Cooper	500 MW	Southern BAA	Santee Cooper	2020			
Load Flow Cases							
2019 Series Version 2 SERTP Models: Summer Peak							

Transmission System Impacts

The following tables below identify any constraints attributable to the requested transfer for the contingency and scenario that resulted in the most significant loadings for the conditions studied. Other unit out scenarios or contingencies may also result in constraints to these or other facilities.

Table I.8.1. Pass 0 – Transmission System Impacts with No Enhancements – SBAA

The following table identifies significant **SBAA** thermal constraints without any enhancements to the transmission system.

			Thermal Lo	oadings (%)			
AREA	Limiting Element	Rating (MVA)	Without Request	With Request	Contingency	Scenario	Project
SBAA	None Identified	-	-	-	-	-	_

Scenario Explanations:

Table I.8.2. Pass 1 – Potential Future Transmission System Impacts – SBAA

The following table depicts thermal loadings of **SBAA** transmission facilities that could become potential constraints in future years or with different queuing assumptions but are not overloaded in the study year with all proposed enhancements to the transmission system.

			Thermal L	oadings (%)			
AREA	Limiting Element	Rating (MVA)	Without Request	With Request	Contingency	Scenario	Project
SBAA	None Identified						

Scenario Explanations:

Table I.8.3. Potential Solutions for Identified Problems – SBAA

Southeastern

TRANSMISSION PLANNING

Regional

The following table lists any potential solutions that were identified to address the attributable constraints based on the assumptions used in this study. It must be noted that changes to the load forecast, and/or changes in the expansion plan could occur and would impact the results of this study. In addition, the currently projected improvements to the transmission system were modeled in the cases. Changes to system conditions and/or the transmission expansion plans could also impact the results of this study.

Item	Potential Solution	Estimated Need Date	Planning Level Cost Estimate
	None Required		
	\$0 ⁽¹⁾		

Tennessee Valley Authority Balancing Authority Area (TVA) Results

Study Structure and Assumptions

Southeastern

TRANSMISSION PLANNING

Regional

Transfer Sensitivity	Amount	Amount Source		Year			
Southern BAA to Santee Cooper	500 MW	Southern BAA	Santee Cooper	2020			
Load Flow Cases							
2019 Series Version 2 SERTP Models: Summer Peak							

Transmission System Impacts

The following tables below identify any constraints attributable to the requested transfer for the contingency and scenario that resulted in the most significant loadings for the conditions studied. Other unit out scenarios or contingencies may also result in constraints to these or other facilities.

Table I.9.1. Pass 0 – Transmission System Impacts with No Enhancements – TVA

The following table identifies significant *TVA* thermal constraints without any enhancements to the transmission system.

			Thermal Lo	oadings (%)			
AREA	Limiting Element	Rating (MVA)	Without Request	With Request	Contingency	Scenario	Project
TVA	None Identified	-	-	-	-	-	-

Scenario Explanations:

Table I.9.2. Pass 1 – Potential Future Transmission System Impacts – TVA

The following table depicts thermal loadings of **TVA** transmission facilities that could become potential constraints in future years or with different queuing assumptions but are not overloaded in the study year with all proposed enhancements to the transmission system.

			Thermal L	oadings (%)			
AREA	Limiting Element	Rating (MVA)	Without Request	With Request	Contingency	Scenario	Project
TVA	None Identified						

Scenario Explanations:

Table I.9.3. Potential Solutions for Identified Problems – TVA

Southeastern

TRANSMISSION PLANNING

Regional

The following table lists any potential solutions that were identified to address the attributable constraints based on the assumptions used in this study. It must be noted that changes to the load forecast, and/or changes in the expansion plan could occur and would impact the results of this study. In addition, the currently projected improvements to the transmission system were modeled in the cases. Changes to system conditions and/or the transmission expansion plans could also impact the results of this study.

ltem	Potential Solution	Estimated Need Date	Planning Level Cost Estimate
	None Required		
	\$0 ⁽¹⁾		

2019 Economic Planning Studies

II. Study Request 2 Results

Southeastern

TRANSMISSION PLANNING

Regional

Duke Energy Carolinas to Santee Cooper 2020 500 MW

Table II.1.1. Total Cost Identified by the SERTP Sponsors

Balancing Authority Area	Planning Level Cost Estimate
Associated Electric Cooperative (AECI)	\$0
Duke Carolinas (DEC)	\$11,000,000
Duke Progress East (DEPE)	\$0
Duke Progress West (DEPW)	\$0
Louisville Gas & Electric and Kentucky Utilities (LG&E/KU)	\$0
PowerSouth (PS)	\$0
Southern (SBAA)	\$0
Tennessee Valley Authority (TVA)	\$0
TOTAL (\$2019)	\$11,000,000
2019 Economic Planning Studies

TRANSMISSION PLANNING

Southeastern

Regional

Diagram II.1.1. Transfer Flow Diagram (% of Total Transfer)

Associated Electric Cooperative Balancing Authority Area (AECI) Results

Study Structure and Assumptions

Transfer Sensitivity	Amount	Source	Sink	Year		
Duke Energy Carolinas to Santee	500 MW	Duke Energy Carolinas	Santee	2020		
Cooper	500 1111	Dake Energy caronnas	Cooper	2020		
	Load Flow	Cases				
2019 Series Version 2 SERTP Models: Summer Peak						

Transmission System Impacts

The following tables below identify any constraints attributable to the requested transfer for the contingency and scenario that resulted in the most significant loadings for the conditions studied. Other unit out scenarios or contingencies may also result in constraints to these or other facilities.

Table II.2.1. Pass 0 – Transmission System Impacts with No Enhancements – AECI

The following table identifies significant *AECI* thermal constraints without any enhancements to the transmission system.

			Thermal Lo	oadings (%)			
AREA	Limiting Element	Rating (MVA)	Without Request	With Request	Contingency	Scenario	Project
AECI	None Identified	-	-	-	-	-	—

Scenario Explanations:

Table II.2.2. Pass 1 – Potential Future Transmission System Impacts – AECI

The following table depicts thermal loadings of **AECI** transmission facilities that could become potential constraints in future years or with different queuing assumptions but are not overloaded in the study year with all proposed enhancements to the transmission system.

			Thermal L	oadings (%)			
AREA	Limiting Element	Rating (MVA)	Without Request	With Request	Contingency	Scenario	Project
AECI	None Identified						

Scenario Explanations:

Table II.2.3. Potential Solutions for Identified Problems – AECI

The following table lists any potential solutions that were identified to address the attributable constraints based on the assumptions used in this study. It must be noted that changes to the load forecast, and/or changes in the expansion plan could occur and would impact the results of this study. In addition, the currently projected improvements to the transmission system were modeled in the cases. Changes to system conditions and/or the transmission expansion plans could also impact the results of this study.

ltem	Potential Solution	Estimated Need Date	Planning Level Cost Estimate						
	None Required								
	AECI TOTAL (\$2019)								

Duke Carolinas Balancing Authority Area (DEC) Results

Study Structure and Assumptions

Transfer Sensitivity	Amount	Source	Sink	Year		
Duke Energy Carolinas to Santee Cooper	500 MW	Duke Energy Carolinas	Santee Cooper	2020		
	Load Flow	Cases	ecepe.			
2019 Series Version 2 SERTP Models: Summer Peak						

Transmission System Impacts

The following tables below identify any constraints attributable to the requested transfer for the contingency and scenario that resulted in the most significant loadings for the conditions studied. Other unit out scenarios or contingencies may also result in constraints to these or other facilities.

Table II.3.1. Pass 0 – Transmission System Impacts with No Enhancements – DEC

The following table identifies significant **DEC** thermal constraints without any enhancements to the transmission system.

			Thermal Lo	oadings (%)			
AREA	Limiting Element	Rating (MVA)	Without Request	With Request	Contingency	Scenario	Project
DEC	Bush River Tie – Saluda Hydro 100kV T.L.	79	101.5(1)	108	Greenwood County – Newberry 230kV T.L.	1	P1
DEC	Laurens Tie – Bush River Tie 100kV T.L.	65	93.9	100.2	Greenwood County – Newberry 230kV T.L.	1	P2

(1) A current operating procedure is sufficient to alleviate this identified constraint without the addition of the proposed transfer. However, the additional transfer exacerbates the loading on this transmission facility such that the operating procedure becomes insufficient.

Scenario Explanations:

1. VC Summer (SCEG) Offline

Table II.3.2. Pass 1 – Potential Future Transmission System Impacts – DEC

The following table depicts thermal loadings of **DEC** transmission facilities that could become potential constraints in future years or with different queuing assumptions but are not overloaded in the study year with all proposed enhancements to the transmission system.

			Thermal Lo	oadings (%)			
AREA	Limiting Element	Rating (MVA)	Without Request	With Request	Contingency	Scenario	Project
DEC	None Identified						

Scenario Explanations:

Table II.3.3. Potential Solutions for Identified Problems – DEC

The following table lists any potential solutions that were identified to address the attributable constraints based on the assumptions used in this study. It must be noted that changes to the load forecast, and/or changes in the expansion plan could occur and would impact the results of this study. In addition, the currently projected improvements to the transmission system were modeled in the cases. Changes to system conditions and/or the transmission expansion plans could also impact the results of this study.

ltem	Potential Solution	Planning Level Cost Estimate	
P1	 Bush River Tie – Saluda Hydro 100kV double circuit T.L. Rebuild the 2.7 miles of Bush River Tie – Saluda Hydro 100kV double circuit transmission line with 954 ACSR conductors rated to 120°C 	Summer 2020	\$4,900,000
P2	 Laurens Tie – Bush River Tie 100kV double circuit T.L. Rebuild approximately 2.8 miles of Laurens Tie – Bush River Tie 100kV double circuit transmission line with 954 ACSR conductors rated to 120°C. 	Summer 2020	\$5,100,000
	DEC TOTAL (\$2019)	\$11,000,000 (1)	

2019 Economic Planning Studies

Southeastern Regional TRANSMISSION PLANNING

Duke Progress East Balancing Authority Area (DEPE) Results

Study Structure and Assumptions

Transfer Sensitivity	Amount	Source	Sink	Year		
Duke Energy Carolinas to Santee Cooper	500 MW	Duke Energy Carolinas	Santee Cooper	2020		
	Load Flow	Cases				
2019 Series Version 2 SERTP Models: Summer Peak						

Transmission System Impacts

The following tables below identify any constraints attributable to the requested transfer for the contingency and scenario that resulted in the most significant loadings for the conditions studied. Other unit out scenarios or contingencies may also result in constraints to these or other facilities.

Table II.4.1. Pass 0 – Transmission System Impacts with No Enhancements – DEPE

The following table identifies significant *DEPE* thermal constraints without any enhancements to the transmission system.

			Thermal Lo	oadings (%)			
AREA	Limiting Element	Rating (MVA)	Without Request	With Request	Contingency	Scenario	Project
DEPE	None Identified		_	_	_	_	-

Scenario Explanations:

Table II.4.2. Pass 1 – Potential Future Transmission System Impacts – DEPE

The following table depicts thermal loadings of **DEPE** transmission facilities that could become potential constraints in future years or with different queuing assumptions but are not overloaded in the study year with all proposed enhancements to the transmission system.

			Thermal Lo	oadings (%)			
AREA	Limiting Element	Rating (MVA)	Without Request	With Request	Contingency	Scenario	Project
DEPE	None Identified						

Scenario Explanations:

Table II.4.3. Potential Solutions for Identified Problems – DEPE

The following table lists any potential solutions that were identified to address the attributable constraints based on the assumptions used in this study. It must be noted that changes to the load forecast, and/or changes in the expansion plan could occur and would impact the results of this study. In addition, the currently projected improvements to the transmission system were modeled in the cases. Changes to system conditions and/or the transmission expansion plans could also impact the results of this study.

ltem	Potential Solution	Estimated Need Date	Planning Level Cost Estimate						
	None Required								
	DEPE TOTAL (\$2019)								

Duke Progress West (DEPW) Results

Study Structure and Assumptions

Transfer Sensitivity	Amount	Source	Sink	Year	
Duke Energy Carolinas to Santee	500 MW	Duke Energy Carolinas	Santee Cooper	2020	
	Load Flow	Cases	cooper		
2019 Series Version 2 SERTP Models: Summer Peak					

Transmission System Impacts

The following tables below identify any constraints attributable to the requested transfer for the contingency and scenario that resulted in the most significant loadings for the conditions studied. Other unit out scenarios or contingencies may also result in constraints to these or other facilities.

Table II.5.1. Pass 0 – Transmission System Impacts with No Enhancements – DEPW

The following table identifies significant **DEPW** thermal constraints without any enhancements to the transmission system.

			Thermal Lo	oadings (%)			
AREA	Limiting Element	Rating (MVA)	Without Request	With Request	Contingency	Scenario	Project
DEPW	None Identified	-	-	-	-	-	—

Scenario Explanations:

Table II.5.2. Pass 1 – Potential Future Transmission System Impacts – DEPW

The following table depicts thermal loadings of **DEPW** transmission facilities that could become potential constraints in future years or with different queuing assumptions but are not overloaded in the study year with all proposed enhancements to the transmission system.

			Thermal Lo	oadings (%)			
AREA	Limiting Element	Rating (MVA)	Without Request	With Request	Contingency	Scenario	Project
DEPW	None Identified						

Scenario Explanations:

Table II.5.3. Potential Solutions for Identified Problems – DEPW

The following table lists any potential solutions that were identified to address the attributable constraints based on the assumptions used in this study. It must be noted that changes to the load forecast, and/or changes in the expansion plan could occur and would impact the results of this study. In addition, the currently projected improvements to the transmission system were modeled in the cases. Changes to system conditions and/or the transmission expansion plans could also impact the results of this study.

Item	Potential Solution	Estimated Need Date	Planning Level Cost Estimate					
	None Required		\$0					
	DEPW TOTAL (\$2019)							

Louisville Gas & Electric and Kentucky Utilities Balancing Authority Area (LG&E/KU) Results

Study Structure and Assumptions

Southeastern

TRANSMISSION PLANNING

Regional

Transfer Sensitivity	Amount	Source	Sink	Year	
Duke Energy Carolinas to Santee Cooper	500 MW	Duke Energy Carolinas	Santee Cooper	2020	
	Load Flow	Cases			
2019 Series Version 2 SERTP Models: Summer Peak					

Transmission System Impacts

The following tables below identify any constraints attributable to the requested transfer for the contingency and scenario that resulted in the most significant loadings for the conditions studied. Other unit out scenarios or contingencies may also result in constraints to these or other facilities.

Table II.6.1. Pass 0 – Transmission System Impacts with No Enhancements – LG&E/KU

The following table identifies significant *LG&E/KU* thermal constraints without any enhancements to the transmission system.

			Thermal Lo	oadings (%)			
AREA	Limiting Element	Rating (MVA)	Without Request	With Request	Contingency	Scenario	Project
LG&E/KU	None Identified	-	-	-	-	-	_

Scenario Explanations:

Table II.6.2. Pass 1 – Potential Future Transmission System Impacts – LG&E/KU

The following table depicts thermal loadings of *LG&E/KU* transmission facilities that could become potential constraints in future years or with different queuing assumptions but are not overloaded in the study year with all proposed enhancements to the transmission system.

			Thermal Lo	oadings (%)			
AREA	Limiting Element	Rating (MVA)	Without Request	With Request	Contingency	Scenario	Project
LG&E/KU	None Identified						

Scenario Explanations:

Table II.6.3. Potential Solutions for Identified Problems – LG&E/KU

The following table lists any potential solutions that were identified to address the attributable constraints based on the assumptions used in this study. It must be noted that changes to the load forecast, and/or changes in the expansion plan could occur and would impact the results of this study. In addition, the currently projected improvements to the transmission system were modeled in the cases. Changes to system conditions and/or the transmission expansion plans could also impact the results of this study.

ltem	Potential Solution	Estimated Need Date	Planning Level Cost Estimate					
	None Required							
	LG&E/KU TOTAL (\$2019)							

PowerSouth Balancing Authority Area (PS) Results

Study Structure and Assumptions

Transfer Sensitivity	Amount	Source	Sink	Year	
Duke Energy Carolinas to Santee Cooper	500 MW	Duke Energy Carolinas	Santee Cooper	2020	
	Load Flow	Cases			
2019 Series Version 2 SERTP Models: Summer Peak					

Transmission System Impacts

The following tables below identify any constraints attributable to the requested transfer for the contingency and scenario that resulted in the most significant loadings for the conditions studied. Other unit out scenarios or contingencies may also result in constraints to these or other facilities.

Table II.7.1. Pass 0 – Transmission System Impacts with No Enhancements – PS

The following table identifies significant **PS** thermal constraints without any enhancements to the transmission system.

			Thermal Lo	oadings (%)			
AREA	Limiting Element	Rating (MVA)	Without Request	With Request	Contingency	Scenario	Project
PS	None Identified	-	-	-	-	-	_

Scenario Explanations:

Table II.7.2. Pass 1 – Potential Future Transmission System Impacts – PS

The following table depicts thermal loadings of **PS** transmission facilities that could become potential constraints in future years or with different queuing assumptions but are not overloaded in the study year with all proposed enhancements to the transmission system.

			Thermal Lo	oadings (%)			
AREA	Limiting Element	Rating (MVA)	Without Request	With Request	Contingency	Scenario	Project
PS	None Identified						

Scenario Explanations:

Table II.7.3. Potential Solutions for Identified Problems – PS

The following table lists any potential solutions that were identified to address the attributable constraints based on the assumptions used in this study. It must be noted that changes to the load forecast, and/or changes in the expansion plan could occur and would impact the results of this study. In addition, the currently projected improvements to the transmission system were modeled in the cases. Changes to system conditions and/or the transmission expansion plans could also impact the results of this study.

ltem	Potential Solution	Estimated Need Date	Planning Level Cost Estimate					
	None Required							
	PS TOTAL (\$2019)							

Southern Balancing Authority Area (SBAA) Results

Study Structure and Assumptions

Transfer Sensitivity	Amount	Source	Sink	Year					
Duke Energy Carolinas to Santee Cooper	500 MW	Duke Energy Carolinas	Santee Cooper	2020					
Load Flow Cases									
2019 Series Version 2 SERTP Models: Summer Peak									

Transmission System Impacts

The following tables below identify any constraints attributable to the requested transfer for the contingency and scenario that resulted in the most significant loadings for the conditions studied. Other unit out scenarios or contingencies may also result in constraints to these or other facilities.

Table II.8.1. Pass 0 – Transmission System Impacts with No Enhancements – SBAA

The following table identifies significant **SBAA** thermal constraints without any enhancements to the transmission system.

			Thermal Lo	oadings (%)			
AREA	Limiting Element	Rating (MVA)	Without Request	With Request	Contingency	Scenario	Project
SBAA	None Identified						

Scenario Explanations:

Table II.8.2. Pass 1 – Potential Future Transmission System Impacts – SBAA

The following table depicts thermal loadings of **SBAA** transmission facilities that could become potential constraints in future years or with different queuing assumptions but are not overloaded in the study year with all proposed enhancements to the transmission system.

			Thermal L	oadings (%)			
AREA	Limiting Element	Rating (MVA)	Without Request	With Request	Contingency	Scenario	Project
SBAA							

Scenario Explanations:

Table II.8.3. Potential Solutions for Identified Problems – SBAA

The following table lists any potential solutions that were identified to address the attributable constraints based on the assumptions used in this study. It must be noted that changes to the load forecast, and/or changes in the expansion plan could occur and would impact the results of this study. In addition, the currently projected improvements to the transmission system were modeled in the cases. Changes to system conditions and/or the transmission expansion plans could also impact the results of this study.

ltem	Potential Solution	Estimated Need Date	Planning Level Cost Estimate
	None Required		
	SBAA TOTAL (\$2019)		\$0 ⁽¹⁾

Tennessee Valley Authority Balancing Authority Area (TVA) Results

Study Structure and Assumptions

Transfer Sensitivity	Amount	Source	Sink	Year			
Duke Energy Carolinas to Santee Cooper	500 MW	Duke Energy Carolinas	Santee Cooper	2020			
	Load Flow	Cases					
2019 Series Version 2 SERTP Models: Summer Peak							

Transmission System Impacts

The following tables below identify any constraints attributable to the requested transfer for the contingency and scenario that resulted in the most significant loadings for the conditions studied. Other unit out scenarios or contingencies may also result in constraints to these or other facilities.

Table II.9.1. Pass 0 – Transmission System Impacts with No Enhancements – TVA

The following table identifies significant *TVA* thermal constraints without any enhancements to the transmission system.

			Thermal Lo	oadings (%)			
AREA	Limiting Element	Rating (MVA)	Without Request	With Request	Contingency	Scenario	Project
TVA	None Identified	-	_	_	-	_	_

Scenario Explanations:

Table II.9.2. Pass 1 – Potential Future Transmission System Impacts – TVA

The following table depicts thermal loadings of **TVA** transmission facilities that could become potential constraints in future years or with different queuing assumptions but are not overloaded in the study year with all proposed enhancements to the transmission system.

			Thermal Lo	oadings (%)			
AREA	Limiting Element	Rating (MVA)	Without Request	With Request	Contingency	Scenario	Project
TVA	None Identified						

Scenario Explanations:

Table II.9.3. Potential Solutions for Identified Problems – TVA

The following table lists any potential solutions that were identified to address the attributable constraints based on the assumptions used in this study. It must be noted that changes to the load forecast, and/or changes in the expansion plan could occur and would impact the results of this study. In addition, the currently projected improvements to the transmission system were modeled in the cases. Changes to system conditions and/or the transmission expansion plans could also impact the results of this study.

Item	Potential Solution	Estimated Need Date	Planning Level Cost Estimate				
	None Required						
	TVA TOTAL (\$2019)						

2019 Economic Planning Studies

III. Study Request 3 Results

Southern BAA to Santee Cooper 2020 800 MW

Table III.1.1. Total Cost Identified by the SERTP Sponsors

Balancing Authority Area	Planning Level Cost Estimate
Associated Electric Cooperative (AECI)	\$0
Duke Carolinas (DEC)	\$11,000,000
Duke Progress East (DEPE)	\$0
Duke Progress West (DEPW)	\$0
Louisville Gas & Electric and Kentucky Utilities (LG&E/KU)	\$0
PowerSouth (PS)	\$0
Southern (SBAA)	\$11,000,000
Tennessee Valley Authority (TVA)	\$0
TOTAL (\$2019)	\$22,000,000

2019 Economic Planning Studies

TRANSMISSION PLANNING

Southeastern

Regional

Diagram III.1.1. Transfer Flow Diagram (% of Total Transfer)

Associated Electric Cooperative Balancing Authority Area (AECI) Results

Study Structure and Assumptions

Transfer Sensitivity	Amount	Source	Sink	Year			
Southern BAA to Santee Cooper	800 MW	Southern BAA	Santee	2020			
southern by we obtained cooper	000 1111	Southern Britt	Cooper				
	Load Flow	Cases					
2019 Series Version 2 SERTP Models: Summer Peak							

Transmission System Impacts

The following tables below identify any constraints attributable to the requested transfer for the contingency and scenario that resulted in the most significant loadings for the conditions studied. Other unit out scenarios or contingencies may also result in constraints to these or other facilities.

Table III.2.1. Pass 0 – Transmission System Impacts with No Enhancements – AECI

The following table identifies significant *AECI* thermal constraints without any enhancements to the transmission system.

			Thermal Lo	oadings (%)			
AREA	Limiting Element	Rating (MVA)	Without Request	With Request	Contingency	Scenario	Project
AECI	None Identified	-	-	_	-	_	_

Scenario Explanations:

Table III.2.2. Pass 1 – Potential Future Transmission System Impacts – AECI

The following table depicts thermal loadings of *AECI* transmission facilities that could become potential constraints in future years or with different queuing assumptions but are not overloaded in the study year with all proposed enhancements to the transmission system.

			Thermal L	oadings (%)			
AREA	Limiting Element	Rating (MVA)	Without Request	With Request	Contingency	Scenario	Project
AECI	None Identified						

Scenario Explanations:

Table III.2.3. Potential Solutions for Identified Problems – AECI

The following table lists any potential solutions that were identified to address the attributable constraints based on the assumptions used in this study. It must be noted that changes to the load forecast, and/or changes in the expansion plan could occur and would impact the results of this study. In addition, the currently projected improvements to the transmission system were modeled in the cases. Changes to system conditions and/or the transmission expansion plans could also impact the results of this study.

ltem	Potential Solution	Estimated Need Date	Planning Level Cost Estimate
	None Required		
	\$0 ⁽¹⁾		

Duke Carolinas Balancing Authority Area (DEC) Results

Study Structure and Assumptions

Transfer Sensitivity	Amount	Source	Sink	Year			
Southern BAA to Santee Cooper	800 MW	Southern BAA	Santee	2020			
southern britte suffice cooper	000 1111	Southern Britt	Cooper	2020			
Load Flow Cases							
2019 Series Version 2 SERTP Models: Summer Peak							

Transmission System Impacts

The following tables below identify any constraints attributable to the requested transfer for the contingency and scenario that resulted in the most significant loadings for the conditions studied. Other unit out scenarios or contingencies may also result in constraints to these or other facilities.

Table III.3.1. Pass 0 – Transmission System Impacts with No Enhancements – DEC

The following table identifies significant **DEC** thermal constraints without any enhancements to the transmission system.

			Thermal L	oadings (%)			
AREA	Limiting Element	Rating (MVA)	Without Request	With Request	Contingency	Scenario	Project
DEC	Bush River Tie – Saluda Hydro 100kV T.L.	79	101.5(1)	110.8	Greenwood County – Newberry 230kV T.L.	1	P1
DEC	Laurens Tie – Bush River Tie 100kV T.L.	65	93.9	103.1	Greenwood County – Newberry 230kV T.L.	1	P2

(1) A current operating procedure is sufficient to alleviate this identified constraint without the addition of the proposed transfer. However, the additional transfer exacerbates the loading on this transmission facility such that the operating procedure becomes insufficient.

Scenario Explanations:

1. VC Summer (SCEG) Offline

Table III.3.2. Pass 1 – Potential Future Transmission System Impacts – DEC

The following table depicts thermal loadings of **DEC** transmission facilities that could become potential constraints in future years or with different queuing assumptions but are not overloaded in the study year with all proposed enhancements to the transmission system.

			Thermal L	oadings (%)			
AREA	Limiting Element	Rating (MVA)	Without Request	With Request	Contingency	Scenario	Project
DEC	None Identified						

Scenario Explanations:

Table III.3.3. Potential Solutions for Identified Problems – DEC

The following table lists any potential solutions that were identified to address the attributable constraints based on the assumptions used in this study. It must be noted that changes to the load forecast, and/or changes in the expansion plan could occur and would impact the results of this study. In addition, the currently projected improvements to the transmission system were modeled in the cases. Changes to system conditions and/or the transmission expansion plans could also impact the results of this study.

Item	Potential Solution	Planning Level Cost Estimate	
P1	 Bush River Tie – Saluda Hydro 100kV double circuit T.L. Rebuild the 2.7 miles of Bush River Tie – Saluda Hydro 100kV double circuit transmission line with 954 ACSR conductors rated to 120°C 	Summer 2020	\$4,900,000
P2	 Laurens Tie – Bush River Tie 100kV double circuit T.L. Rebuild approximately 2.8 miles of Laurens Tie – Bush River Tie 100kV double circuit transmission line with 954 ACSR conductors rated to 120°C. 	Summer 2020	\$5,100,000
	\$11,000,000 ⁽¹⁾		

Southeastern Regional

TRANSMISSION PLANNING

2019 Economic Planning Studies

Duke Progress East Balancing Authority Area (DEPE) Results

Study Structure and Assumptions

Transfer Sensitivity	Amount	Source	Sink	Year			
Southern BAA to Santee Cooper	800 MW	Southern BAA	Santee Cooper	2020			
	Load Flow	Cases					
2019 Series Version 2 SERTP Models: Summer Peak							

Transmission System Impacts

The following tables below identify any constraints attributable to the requested transfer for the contingency and scenario that resulted in the most significant loadings for the conditions studied. Other unit out scenarios or contingencies may also result in constraints to these or other facilities.

Table III.4.1. Pass 0 – Transmission System Impacts with No Enhancements – DEPE

The following table identifies significant **DEPE** thermal constraints without any enhancements to the transmission system.

			Thermal Lo	oadings (%)			
AREA	Limiting Element	Rating (MVA)	Without Request	With Request	Contingency	Scenario	Project
DEPE	None Identified	-	_	-	-	_	_

Scenario Explanations:

Table III.4.2. Pass 1 – Potential Future Transmission System Impacts – DEPE

The following table depicts thermal loadings of **DEPE** transmission facilities that could become potential constraints in future years or with different queuing assumptions but are not overloaded in the study year with all proposed enhancements to the transmission system.

			Thermal L	oadings (%)			
AREA	Limiting Element	Rating (MVA)	Without Request	With Request	Contingency	Scenario	Project
DEPE	None Identified						

Scenario Explanations:

Table III.4.3. Potential Solutions for Identified Problems – DEPE

The following table lists any potential solutions that were identified to address the attributable constraints based on the assumptions used in this study. It must be noted that changes to the load forecast, and/or changes in the expansion plan could occur and would impact the results of this study. In addition, the currently projected improvements to the transmission system were modeled in the cases. Changes to system conditions and/or the transmission expansion plans could also impact the results of this study.

ltem	Potential Solution	Estimated Need Date	Planning Level Cost Estimate
	None Required		
	DEPE TOTAL (\$2019)		\$0 ⁽¹⁾

(1) Total planning level cost estimate does not include the cost of projects that are included in SERTP Sponsors' expansion plans and are scheduled to be completed by June 1st of the study year. The studied transfer depends on these projects being in-service, and the cost to support the study transfer could be greater than the total shown above if any of these projects are delayed or cancelled.

Duke Progress West (DEPW) Results

Study Structure and Assumptions

Transfer Sensitivity	Amount	Source	Sink	Year			
Southern BAA to Santee Cooper	800 MW	Southern BAA	Santee Cooper	2020			
	Load Flow	Cases					
2019 Series Version 2 SERTP Models: Summer Peak							

Transmission System Impacts

The following tables below identify any constraints attributable to the requested transfer for the contingency and scenario that resulted in the most significant loadings for the conditions studied. Other unit out scenarios or contingencies may also result in constraints to these or other facilities.

Table III.5.1. Pass 0 – Transmission System Impacts with No Enhancements – DEPW

The following table identifies significant **DEPW** thermal constraints without any enhancements to the transmission system.

		Thermal Lo	oadings (%)				
AREA	Limiting Element	Rating (MVA)	Without Request	With Request	Contingency	Scenario	Project
DEPW	None Identified	_	_	_	-	_	_

Scenario Explanations:

Table III.5.2. Pass 1 – Potential Future Transmission System Impacts – DEPW

The following table depicts thermal loadings of **DEPW** transmission facilities that could become potential constraints in future years or with different queuing assumptions but are not overloaded in the study year with all proposed enhancements to the transmission system.

			Thermal L	oadings (%)			
AREA	Limiting Element	Rating (MVA)	Without Request	With Request	Contingency	Scenario	Project
DEPW	None Identified						

Scenario Explanations:

Table III.5.3. Potential Solutions for Identified Problems – DEPW

The following table lists any potential solutions that were identified to address the attributable constraints based on the assumptions used in this study. It must be noted that changes to the load forecast, and/or changes in the expansion plan could occur and would impact the results of this study. In addition, the currently projected improvements to the transmission system were modeled in the cases. Changes to system conditions and/or the transmission expansion plans could also impact the results of this study.

ltem	Potential Solution	Estimated Need Date	Planning Level Cost Estimate
	None Required		\$0
	DEPW TOTAL (\$2019)		\$0 ⁽¹⁾

(1) Total planning level cost estimate does not include the cost of projects that are included in SERTP Sponsors' expansion plans and are scheduled to be completed by June 1st of the study year. The studied transfer depends on these projects being in-service, and the cost to support the study transfer could be greater than the total shown above if any of these projects are delayed or cancelled.

TRANSMISSION PLANNING

Southeastern

Regional

Louisville Gas & Electric and Kentucky Utilities Balancing Authority Area (LG&E/KU) Results

Study Structure and Assumptions

Transfer Sensitivity	Amount	Source	Sink	Year			
Southern BAA to Santee Cooper	800 MW	Southern BAA	Santee Cooper	2020			
	Load Flow	Cases					
2019 Series Version 2 SERTP Models: Summer Peak							

Transmission System Impacts

The following tables below identify any constraints attributable to the requested transfer for the contingency and scenario that resulted in the most significant loadings for the conditions studied. Other unit out scenarios or contingencies may also result in constraints to these or other facilities.

Table III.6.1. Pass 0 – Transmission System Impacts with No Enhancements – LG&E/KU

The following table identifies significant *LG&E/KU* thermal constraints without any enhancements to the transmission system.

			Thermal Lo	oadings (%)			
AREA	Limiting Element	Rating (MVA)	Without Request	With Request	Contingency	Scenario	Project
LG&E/KU	None Identified	_	_	_	-	_	—

Scenario Explanations:

Table III.6.2. Pass 1 – Potential Future Transmission System Impacts – LG&E/KU

The following table depicts thermal loadings of *LG&E/KU* transmission facilities that could become potential constraints in future years or with different queuing assumptions but are not overloaded in the study year with all proposed enhancements to the transmission system.

			Thermal Lo	oadings (%)			
AREA	Limiting Element	Rating (MVA)	Without Request	With Request	Contingency	Scenario	Project
LG&E/KU	None Identified				-		

Scenario Explanations:

Table III.6.3. Potential Solutions for Identified Problems – LG&E/KU

The following table lists any potential solutions that were identified to address the attributable constraints based on the assumptions used in this study. It must be noted that changes to the load forecast, and/or changes in the expansion plan could occur and would impact the results of this study. In addition, the currently projected improvements to the transmission system were modeled in the cases. Changes to system conditions and/or the transmission expansion plans could also impact the results of this study.

ltem	Potential Solution	Estimated Need Date	Planning Level Cost Estimate
	None Required		
	LG&E/KU TOTAL (\$2019)		\$0 ⁽¹⁾

(1) Total planning level cost estimate does not include the cost of projects that are included in SERTP Sponsors' expansion plans and are scheduled to be completed by June 1st of the study year. The studied transfer depends on these projects being in-service, and the cost to support the study transfer could be greater than the total shown above if any of these projects are delayed or cancelled.

PowerSouth Balancing Authority Area (PS) Results

Study Structure and Assumptions

Transfer Sensitivity Amount Source Sink Year								
Southern BAA to Santee Cooper 800 MW Southern BAA 2020								
Cooper								
Load Flow Cases								
2019 Series Version 2 SERTP Models: Summer Peak								

Transmission System Impacts

The following tables below identify any constraints attributable to the requested transfer for the contingency and scenario that resulted in the most significant loadings for the conditions studied. Other unit out scenarios or contingencies may also result in constraints to these or other facilities.

Table III.7.1. Pass 0 – Transmission System Impacts with No Enhancements – PS

The following table identifies significant **PS** thermal constraints without any enhancements to the transmission system.

			Thermal Lo	oadings (%)			
AREA	Limiting Element	Rating (MVA)	Without Request	With Request	Contingency	Scenario	Project
PS	None Identified	-	_	_	-	_	_

Scenario Explanations:

Table III.7.2. Pass 1 – Potential Future Transmission System Impacts – PS

The following table depicts thermal loadings of **PS** transmission facilities that could become potential constraints in future years or with different queuing assumptions but are not overloaded in the study year with all proposed enhancements to the transmission system.

			Thermal L	oadings (%)			
AREA	Limiting Element	Rating (MVA)	Without Request	With Request	Contingency	Scenario	Project
PS	None Identified						

Scenario Explanations:

Table III.7.3. Potential Solutions for Identified Problems – PS

The following table lists any potential solutions that were identified to address the attributable constraints based on the assumptions used in this study. It must be noted that changes to the load forecast, and/or changes in the expansion plan could occur and would impact the results of this study. In addition, the currently projected improvements to the transmission system were modeled in the cases. Changes to system conditions and/or the transmission expansion plans could also impact the results of this study.

ltem	Potential Solution	Estimated Need Date	Planning Level Cost Estimate					
	None Required							
	PS TOTAL (\$2019)							

(1) Total planning level cost estimate does not include the cost of projects that are included in SERTP Sponsors' expansion plans and are scheduled to be completed by June 1st of the study year. The studied transfer depends on these projects being in-service, and the cost to support the study transfer could be greater than the total shown above if any of these projects are delayed or cancelled.

Southern Balancing Authority Area (SBAA) Results

Study Structure and Assumptions

Transfer Sensitivity Amount Source Sink Year								
Southern BAA to Santee Cooper	800 MW	Southern BAA	Santee Cooper	2020				
Load Flow Cases								
2019 Series Version 2 SERTP Models: Summer Peak								

Transmission System Impacts

The following tables below identify any constraints attributable to the requested transfer for the contingency and scenario that resulted in the most significant loadings for the conditions studied. Other unit out scenarios or contingencies may also result in constraints to these or other facilities.

Table III.8.1. Pass 0 – Transmission System Impacts with No Enhancements – SBAA

The following table identifies significant **SBAA** thermal constraints without any enhancements to the transmission system.

		Thermal Loadings (%)					
AREA	Limiting Element	Rating (MVA)	Without Request	With Request	Contingency	Scenario	Project
SBAA	380847 3BAXLEY 115.00 380848 3PINE GRV D 115.00 1	114	99	104	380160 6HATCH 230.00 382102 6HATCH SS 2 230.00 1	1	P1

Scenario Explanations:

1. Vogtle Unit #1 Offline, Summer Peak Case

Table III.8.2. Pass 1 – Potential Future Transmission System Impacts – SBAA

The following table depicts thermal loadings of **SBAA** transmission facilities that could become potential constraints in future years or with different queuing assumptions but are not overloaded in the study year with all proposed enhancements to the transmission system.

AREA Limiting Element Rating (MVA) Without Request With Request Contingency Scenario Proje				Thermal Lo	oadings (%)			
SBAA None Identified	AREA	Limiting Element	Rating (MVA)	Without Request	With Request	Contingency	Scenario	Project
	SBAA	None Identified				-		

Scenario Explanations:

Table III.8.3. Potential Solutions for Identified Problems – SBAA

The following table lists any potential solutions that were identified to address the attributable constraints based on the assumptions used in this study. It must be noted that changes to the load forecast, and/or changes in the expansion plan could occur and would impact the results of this study. In addition, the currently projected improvements to the transmission system were modeled in the cases. Changes to system conditions and/or the transmission expansion plans could also impact the results of this study.

ltem	Potential Solution	Estimated Need Date	Planning Level Cost Estimate
P1	 Baxley – Hazelhurst 115kV T.L. Rebuild approximately 11.2 miles of Baxley – Hazelhurst 115kV Transmission Line with 100°C 795 ACSR 	Summer, 2020	\$11,000,000
	SBAA TOTAL (\$2019)		\$11,000,000 ⁽¹⁾

(1) Total planning level cost estimate does not include the cost of projects that are included in SERTP Sponsors' expansion plans and are scheduled to be completed by June 1st of the study year. The studied transfer depends on these projects being in-service, and the cost to support the study transfer could be greater than the total shown above if any of these projects are delayed or cancelled.

Diagram III.9.1. Approximate Location of Potential Solutions – SBAA

Tennessee Valley Authority Balancing Authority Area (TVA) Results

Study Structure and Assumptions

Transfer Sensitivity Amount Source Sink Year								
Southern BAA to Santee Cooper 800 MW Southern BAA Santee Cooper 2020								
Load Flow Cases								
2019 Series Version 2 SERTP Models: Summer Peak								

Transmission System Impacts

The following tables below identify any constraints attributable to the requested transfer for the contingency and scenario that resulted in the most significant loadings for the conditions studied. Other unit out scenarios or contingencies may also result in constraints to these or other facilities.

Table III.9.1. Pass 0 – Transmission System Impacts with No Enhancements – TVA

The following table identifies significant *TVA* thermal constraints without any enhancements to the transmission system.

			Thermal Lo	oadings (%)			
AREA	Limiting Element	Rating (MVA)	Without Request	With Request	Contingency	Scenario	Project
TVA	None Identified	-	_	_	-	_	_

Scenario Explanations:

Table III.9.2. Pass 1 – Potential Future Transmission System Impacts – TVA

The following table depicts thermal loadings of **TVA** transmission facilities that could become potential constraints in future years or with different queuing assumptions but are not overloaded in the study year with all proposed enhancements to the transmission system.

			Thermal L	oadings (%)			
AREA	Limiting Element	Rating (MVA)	Without Request	With Request	Contingency	Scenario	Project
TVA	None Identified						

Scenario Explanations:

Table III.9.3. Potential Solutions for Identified Problems – TVA

The following table lists any potential solutions that were identified to address the attributable constraints based on the assumptions used in this study. It must be noted that changes to the load forecast, and/or changes in the expansion plan could occur and would impact the results of this study. In addition, the currently projected improvements to the transmission system were modeled in the cases. Changes to system conditions and/or the transmission expansion plans could also impact the results of this study.

ltem	Potential Solution	Estimated Need Date	Planning Level Cost Estimate					
	None Required							
	TVA TOTAL (\$2019)							

(1) Total planning level cost estimate does not include the cost of projects that are included in SERTP Sponsors' expansion plans and are scheduled to be completed by June 1st of the study year. The studied transfer depends on these projects being in-service, and the cost to support the study transfer could be greater than the total shown above if any of these projects are delayed or cancelled.

2019 Economic Planning Studies

IV. Study Request 4 Results

Duke Energy Carolinas to Santee Cooper 2024 500 MW

Table IV.1.1. Total Cost Identified by the SERTP Sponsors

Balancing Authority Area	Planning Level Cost Estimate
Associated Electric Cooperative (AECI)	\$0
Duke Carolinas (DEC)	\$0
Duke Progress East (DEPE)	\$6,500,000
Duke Progress West (DEPW)	\$0
Gulf Power (GP)	\$0
Louisville Gas & Electric and Kentucky Utilities (LG&E/KU)	\$0
PowerSouth (PS)	\$0
Southern (SBAA)	\$0
Tennessee Valley Authority (TVA)	\$0
TOTAL (\$2019)	\$6,500,000

Diagram IV.1.1. Transfer Flow Diagram (% of Total Transfer)

Southeastern

TRANSMISSION PLANNING

Regional

Page | 92

Associated Electric Cooperative Balancing Authority Area (AECI) Results

Study Structure and Assumptions

Transfer Sensitivity	Amount	Source	Sink	Year						
Duke Energy Carolinas to Santee Cooper	500 MW	Duke Energy Carolinas	Santee Cooper	2024						
Load Flow Cases										
2019 Series Version 2 SERTP Models: Winter										

Transmission System Impacts

The following tables below identify any constraints attributable to the requested transfer for the contingency and scenario that resulted in the most significant loadings for the conditions studied. Other unit out scenarios or contingencies may also result in constraints to these or other facilities.

Table IV.2.1. Pass 0 – Transmission System Impacts with No Enhancements – AECI

The following table identifies significant *AECI* thermal constraints without any enhancements to the transmission system.

			Thermal Lo	oadings (%)			
AREA	Limiting Element	Rating (MVA)	Without Request	With Request	Contingency	Scenario	Project
AECI	None Identified	-	_	-	-	-	—

Scenario Explanations:

Table IV.2.2. Pass 1 – Potential Future Transmission System Impacts – AECI

The following table depicts thermal loadings of **AECI** transmission facilities that could become potential constraints in future years or with different queuing assumptions but are not overloaded in the study year with all proposed enhancements to the transmission system.

			Thermal L	oadings (%)			
AREA	Limiting Element	Rating (MVA)	Without Request	With Request	Contingency	Scenario	Project
AECI	None Identified						

Scenario Explanations:

Table IV.2.3. Potential Solutions for Identified Problems – AECI

The following table lists any potential solutions that were identified to address the attributable constraints based on the assumptions used in this study. It must be noted that changes to the load forecast, and/or changes in the expansion plan could occur and would impact the results of this study. In addition, the currently projected improvements to the transmission system were modeled in the cases. Changes to system conditions and/or the transmission expansion plans could also impact the results of this study.

Item	Potential Solution	Estimated Need Date	Planning Level Cost Estimate
	None Required		
	AECI TOTAL (\$2019)		\$0 ⁽¹⁾

(1) Total planning level cost estimate does not include the cost of projects that are included in SERTP Sponsors' expansion plans and are scheduled to be completed by winter of the study year. The studied transfer depends on these projects being in-service, and the cost to support the study transfer could be greater than the total shown above if any of these projects are delayed or cancelled.

2019 Economic Planning Studies

Duke Carolinas Balancing Authority Area (DEC) Results

Study Structure and Assumptions

Transfer Sensitivity	Amount	Source	Sink	Year						
Duke Energy Carolinas to Santee Cooper	500 MW	Duke Energy Carolinas	Santee Cooper	2024						
Load Flow Cases										
2019 Series Version 2 SERTP Models: Winter										

Transmission System Impacts

The following tables below identify any constraints attributable to the requested transfer for the contingency and scenario that resulted in the most significant loadings for the conditions studied. Other unit out scenarios or contingencies may also result in constraints to these or other facilities.

Table IV.3.1. Pass 0 – Transmission System Impacts with No Enhancements – DEC

The following table identifies significant **DEC** thermal constraints without any enhancements to the transmission system.

			Thermal Lo	oadings (%)			
AREA	Limiting Element	Rating (MVA)	Without Request	With Request	Contingency	Scenario	Project
DEC	None Identified		-	-	-		-

Scenario Explanations:

Table IV.3.2. Pass 1 – Potential Future Transmission System Impacts – DEC

The following table depicts thermal loadings of **DEC** transmission facilities that could become potential constraints in future years or with different queuing assumptions but are not overloaded in the study year with all proposed enhancements to the transmission system.

			Thermal L	oadings (%)			
AREA	Limiting Element	Rating (MVA)	Without Request	With Request	Contingency	Scenario	Project
DEC	None Identified						

Scenario Explanations:

Table IV.3.3. Potential Solutions for Identified Problems – DEC

The following table lists any potential solutions that were identified to address the attributable constraints based on the assumptions used in this study. It must be noted that changes to the load forecast, and/or changes in the expansion plan could occur and would impact the results of this study. In addition, the currently projected improvements to the transmission system were modeled in the cases. Changes to system conditions and/or the transmission expansion plans could also impact the results of this study.

Item	Potential Solution	Estimated Need Date	Planning Level Cost Estimate				
	None Required						
	DEC TOTAL (\$2019)						

(1) Total planning level cost estimate does not include the cost of projects that are included in SERTP Sponsors' expansion plans and are scheduled to be completed by winter of the study year. The studied transfer depends on these projects being in-service, and the cost to support the study transfer could be greater than the total shown above if any of these projects are delayed or cancelled.

Duke Progress East Balancing Authority Area (DEPE) Results

Study Structure and Assumptions

Transfer Sensitivity	Amount	Source	Sink	Year						
Duke Energy Carolinas to Santee Cooper	500 MW	Duke Energy Carolinas	Santee Cooper	2024						
Load Flow Cases										
2019 Series Version 2 SERTP Models: Winter										

Transmission System Impacts

The following tables below identify any constraints attributable to the requested transfer for the contingency and scenario that resulted in the most significant loadings for the conditions studied. Other unit out scenarios or contingencies may also result in constraints to these or other facilities.

Table IV.4.1. Pass 0 – Transmission System Impacts with No Enhancements – DEPE

The following table identifies significant *DEPE* thermal constraints without any enhancements to the transmission system.

			Thermal L	oadings (%)			
AREA	Limiting Element	Rating (MVA)	Without Request	With Request	Contingency	Scenario	Project
DEPE	Wateree 115/100kV 150MVA Transformers	150	93	103	Camden-(SCPSA) Lugoff 230kV Tie	1	P1

Scenario Explanations:

1. Robinson 2 Down TRM

Table IV.4.2. Pass 1 – Potential Future Transmission System Impacts – DEPE

The following table depicts thermal loadings of **DEPE** transmission facilities that could become potential constraints in future years or with different queuing assumptions but are not overloaded in the study year with all proposed enhancements to the transmission system.

			Thermal L	oadings (%)			
AREA	Limiting Element	Rating (MVA)	Without Request	With Request	Contingency	Scenario	Project
DEPE	None Identified						

Scenario Explanations:

Table IV.4.3. Potential Solutions for Identified Problems – DEPE

The following table lists any potential solutions that were identified to address the attributable constraints based on the assumptions used in this study. It must be noted that changes to the load forecast, and/or changes in the expansion plan could occur and would impact the results of this study. In addition, the currently projected improvements to the transmission system were modeled in the cases. Changes to system conditions and/or the transmission expansion plans could also impact the results of this study.

Item	Potential Solution	Estimated Need Date	Planning Level Cost Estimate
P1	Replace existing 150 MVA 115/100kV transformer bank with 336 MVA 115/100kV transformer bank	Winter, 2024	\$6,500,000
	\$6,500,000 ⁽¹⁾		

(1) Total planning level cost estimate does not include the cost of projects that are included in SERTP Sponsors' expansion plans and are scheduled to be completed by winter of the study year. The studied transfer depends on these projects being in-service, and the cost to support the study transfer could be greater than the total shown above if any of these projects are delayed or cancelled.

Duke Progress West (DEPW) Results

Study Structure and Assumptions

Transfer Sensitivity	Amount	Source	Sink	Year			
Duke Energy Carolinas to Santee	500 MW	Duke Energy Carolinas	Santee	2024			
Cooper	500 10100	Duke Energy carolinas	Cooper	2024			
Load Flow Cases							
2019 Series Version 2 SERTP Models: Winter							

Transmission System Impacts

The following tables below identify any constraints attributable to the requested transfer for the contingency and scenario that resulted in the most significant loadings for the conditions studied. Other unit out scenarios or contingencies may also result in constraints to these or other facilities.

Table IV.5.1. Pass 0 – Transmission System Impacts with No Enhancements – *DEPW*

The following table identifies significant **DEPW** thermal constraints without any enhancements to the transmission system.

	Thermal Loadin		oadings (%)				
AREA	Limiting Element	Rating (MVA)	Without Request	With Request	Contingency	Scenario	Project
DEPW	None Identified	-	_	-	-		—

Scenario Explanations:

Table IV.5.2. Pass 1 – Potential Future Transmission System Impacts – DEPW

The following table depicts thermal loadings of **DEPW** transmission facilities that could become potential constraints in future years or with different queuing assumptions but are not overloaded in the study year with all proposed enhancements to the transmission system.

	Thermal Loadings (%)						
AREA	Limiting Element	Rating (MVA)	Without Request	With Request	Contingency	Scenario	Project
DEPW	None Identified						

Scenario Explanations:

Table IV.5.3. Potential Solutions for Identified Problems – DEPW

The following table lists any potential solutions that were identified to address the attributable constraints based on the assumptions used in this study. It must be noted that changes to the load forecast, and/or changes in the expansion plan could occur and would impact the results of this study. In addition, the currently projected improvements to the transmission system were modeled in the cases. Changes to system conditions and/or the transmission expansion plans could also impact the results of this study.

Item	Potential Solution	Estimated Need Date	Planning Level Cost Estimate
	None Required		\$0
	DEPW TOTAL (\$2019)		\$0 ⁽¹⁾

(1) Total planning level cost estimate does not include the cost of projects that are included in SERTP Sponsors' expansion plans and are scheduled to be completed by winter of the study year. The studied transfer depends on these projects being in-service, and the cost to support the study transfer could be greater than the total shown above if any of these projects are delayed or cancelled.

Gulf Power (GP) Results

Study Structure and Assumptions

Transfer Sensitivity	Amount	Source	Sink	Year			
Duke Energy Carolinas to Santee Cooper	500 MW	Duke Energy Carolinas	Santee Cooper	2024			
Load Flow Cases							
2019 Series Version 2 SERTP Models: Winter							

Transmission System Impacts

The following tables below identify any constraints attributable to the requested transfer for the contingency and scenario that resulted in the most significant loadings for the conditions studied. Other unit out scenarios or contingencies may also result in constraints to these or other facilities.

Table IV.6.1. Pass 0 – Transmission System Impacts with No Enhancements – GP

The following table identifies significant *GP* thermal constraints without any enhancements to the transmission system.

	Thermal Loadings (%)						
AREA	Limiting Element	Rating (MVA)	Without Request	With Request	Contingency	Scenario	Project
GP	None Identified	-	-	-	-	-	—

Scenario Explanations:
Table IV.6.2. Pass 1 – Potential Future Transmission System Impacts – GP

The following table depicts thermal loadings of *GP* transmission facilities that could become potential constraints in future years or with different queuing assumptions but are not overloaded in the study year with all proposed enhancements to the transmission system.

			Thermal L	oadings (%)			
AREA	Limiting Element	Rating (MVA)	Without Request	With Request	Contingency	Scenario	Project
GP	None Identified						

Scenario Explanations:

Table IV.6.3. Potential Solutions for Identified Problems – GP

The following table lists any potential solutions that were identified to address the attributable constraints based on the assumptions used in this study. It must be noted that changes to the load forecast, and/or changes in the expansion plan could occur and would impact the results of this study. In addition, the currently projected improvements to the transmission system were modeled in the cases. Changes to system conditions and/or the transmission expansion plans could also impact the results of this study.

Item	Potential Solution	Estimated Need Date	Planning Level Cost Estimate
	None Required		\$0
	GP TOTAL (\$2019)		\$0 ⁽¹⁾

Louisville Gas & Electric and Kentucky Utilities Balancing Authority Area (LG&E/KU) Results

Study Structure and Assumptions

Transfer Sensitivity	Amount	Source	Sink	Year					
Duke Energy Carolinas to Santee Cooper	500 MW	Duke Energy Carolinas	Santee Cooper	2024					
Load Flow Cases									
2019 Series Version 2 SERTP Models: Winter									

Transmission System Impacts

The following tables below identify any constraints attributable to the requested transfer for the contingency and scenario that resulted in the most significant loadings for the conditions studied. Other unit out scenarios or contingencies may also result in constraints to these or other facilities.

Table IV.7.1. Pass 0 – Transmission System Impacts with No Enhancements – LG&E/KU

The following table identifies significant *LG&E/KU* thermal constraints without any enhancements to the transmission system.

			Thermal Lo	oadings (%)			
AREA	Limiting Element	Rating (MVA)	Without Request	With Request	Contingency	Scenario	Project
LG&E/KU	None Identified	-	-	-	-	-	_

Scenario Explanations:

Table IV.7.2. Pass 1 – Potential Future Transmission System Impacts – *LG&E/KU*

The following table depicts thermal loadings of *LG&E/KU* transmission facilities that could become potential constraints in future years or with different queuing assumptions but are not overloaded in the study year with all proposed enhancements to the transmission system.

			Thermal Lo	oadings (%)			
AREA	Limiting Element	Rating (MVA)	Without Request	With Request	Contingency	Scenario	Project
LG&E/KU	None Identified						

Scenario Explanations:

Table IV.7.3. Potential Solutions for Identified Problems – LG&E/KU

The following table lists any potential solutions that were identified to address the attributable constraints based on the assumptions used in this study. It must be noted that changes to the load forecast, and/or changes in the expansion plan could occur and would impact the results of this study. In addition, the currently projected improvements to the transmission system were modeled in the cases. Changes to system conditions and/or the transmission expansion plans could also impact the results of this study.

ltem	Potential Solution	Estimated Need Date	Planning Level Cost Estimate
	None Required		
	LG&E/KU TOTAL (\$2019)		\$0 ⁽¹⁾

2019 Economic Planning Studies

PowerSouth Balancing Authority Area (PS) Results

Study Structure and Assumptions

Transfer Sensitivity	Amount	Source	Sink	Year					
Duke Energy Carolinas to Santee Cooper	500 MW	Duke Energy Carolinas	Santee Cooper	2024					
Load Flow Cases									
2019 Series Version 2 SERTP Models: Winter									

Transmission System Impacts

The following tables below identify any constraints attributable to the requested transfer for the contingency and scenario that resulted in the most significant loadings for the conditions studied. Other unit out scenarios or contingencies may also result in constraints to these or other facilities.

Table IV.8.1. Pass 0 – Transmission System Impacts with No Enhancements – PS

The following table identifies significant **PS** thermal constraints without any enhancements to the transmission system.

			Thermal Lo	oadings (%)			
AREA	Limiting Element	Rating (MVA)	Without Request	With Request	Contingency	Scenario	Project
PS	None Identified	-	-	-	-	-	_

Scenario Explanations:

Table IV.8.2. Pass 1 – Potential Future Transmission System Impacts – PS

The following table depicts thermal loadings of **PS** transmission facilities that could become potential constraints in future years or with different queuing assumptions but are not overloaded in the study year with all proposed enhancements to the transmission system.

			Thermal L	oadings (%)			
AREA	Limiting Element	Rating (MVA)	Without Request	With Request	Contingency	Scenario	Project
PS	None Identified						

Scenario Explanations:

Table IV.8.3. Potential Solutions for Identified Problems – *PS*

The following table lists any potential solutions that were identified to address the attributable constraints based on the assumptions used in this study. It must be noted that changes to the load forecast, and/or changes in the expansion plan could occur and would impact the results of this study. In addition, the currently projected improvements to the transmission system were modeled in the cases. Changes to system conditions and/or the transmission expansion plans could also impact the results of this study.

ltem	Potential Solution	Estimated Need Date	Planning Level Cost Estimate
	None Required		
	PS TOTAL (\$2019)		\$0 ⁽¹⁾

Southern Balancing Authority Area (SBAA) Results

Study Structure and Assumptions

Transfer Sensitivity	Amount	Source	Sink	Year					
Duke Energy Carolinas to Santee Cooper	500 MW	Duke Energy Carolinas	Santee Cooper	2024					
Load Flow Cases									
2019 Series Version 2 SERTP Models: Winter									

Transmission System Impacts

The following tables below identify any constraints attributable to the requested transfer for the contingency and scenario that resulted in the most significant loadings for the conditions studied. Other unit out scenarios or contingencies may also result in constraints to these or other facilities.

Table IV.9.1. Pass 0 – Transmission System Impacts with No Enhancements – SBAA

The following table identifies significant **SBAA** thermal constraints without any enhancements to the transmission system.

			Thermal Lo	oadings (%)			
AREA	Limiting Element	Rating (MVA)	Without Request	With Request	Contingency	Scenario	Project
SBAA	None Identified						

Scenario Explanations:

Table IV.9.2. Pass 1 – Potential Future Transmission System Impacts – SBAA

The following table depicts thermal loadings of **SBAA** transmission facilities that could become potential constraints in future years or with different queuing assumptions but are not overloaded in the study year with all proposed enhancements to the transmission system.

			Thermal Lo	oadings (%)			
AREA	Limiting Element	Rating (MVA)	Without Request	With Request	Contingency	Scenario	Project
SBAA	None Identified				-		

Scenario Explanations:

Table IV.9.3. Potential Solutions for Identified Problems – SBAA

The following table lists any potential solutions that were identified to address the attributable constraints based on the assumptions used in this study. It must be noted that changes to the load forecast, and/or changes in the expansion plan could occur and would impact the results of this study. In addition, the currently projected improvements to the transmission system were modeled in the cases. Changes to system conditions and/or the transmission expansion plans could also impact the results of this study.

ltem	Potential Solution	Estimated Need Date	Planning Level Cost Estimate
	None Required		
	\$0 ⁽¹⁾		

Tennessee Valley Authority Balancing Authority Area (TVA) Results

Study Structure and Assumptions

Transfer Sensitivity	Amount	Source	Sink	Year				
Duke Energy Carolinas to Santee Cooper	500 MW	Duke Energy Carolinas	Santee Cooper	2024				
Load Flow Cases								
2019 Series Version 2 SERTP Models: Winter								

Transmission System Impacts

The following tables below identify any constraints attributable to the requested transfer for the contingency and scenario that resulted in the most significant loadings for the conditions studied. Other unit out scenarios or contingencies may also result in constraints to these or other facilities.

Table IV.10.1. Pass 0 – Transmission System Impacts with No Enhancements – TVA

The following table identifies significant *TVA* thermal constraints without any enhancements to the transmission system.

		Thermal Loadings (%)					
AREA	Limiting Element	Rating (MVA)	Without Request	With Request	Contingency	Scenario	Project
TVA	None Identified	-	-	_	-	_	_

Scenario Explanations:

Table IV.10.2. Pass 1 – Potential Future Transmission System Impacts – TVA

The following table depicts thermal loadings of **TVA** transmission facilities that could become potential constraints in future years or with different queuing assumptions but are not overloaded in the study year with all proposed enhancements to the transmission system.

			Thermal L	oadings (%)			
AREA	Limiting Element	Rating (MVA)	Without Request	With Request	Contingency	Scenario	Project
TVA	None Identified						

Scenario Explanations:

Table IV.10.3. Potential Solutions for Identified Problems – TVA

The following table lists any potential solutions that were identified to address the attributable constraints based on the assumptions used in this study. It must be noted that changes to the load forecast, and/or changes in the expansion plan could occur and would impact the results of this study. In addition, the currently projected improvements to the transmission system were modeled in the cases. Changes to system conditions and/or the transmission expansion plans could also impact the results of this study.

Item	Potential Solution	Estimated Need Date	Planning Level Cost Estimate
	None Required		
	\$0 ⁽¹⁾		

2019 Economic Planning Studies

V. Study Request 5 Results

Southern BAA to Santee Cooper 2024 1000 MW

Table V.1.1. Total Cost Identified by the SERTP Sponsors

Balancing Authority Area	Planning Level Cost Estimate
Associated Electric Cooperative (AECI)	\$0
Duke Carolinas (DEC)	\$0
Duke Progress East (DEPE)	\$0
Duke Progress West (DEPW)	\$0
Gulf Power (GP)	\$0
Louisville Gas & Electric and Kentucky Utilities (LG&E/KU)	\$0
PowerSouth (PS)	\$0
Southern (SBAA)	\$0
Tennessee Valley Authority (TVA)	\$0
TOTAL (\$2019)	\$0

2019 Economic Planning Studies

TRANSMISSION PLANNING

Southeastern

Regional

Diagram V.1.1. Transfer Flow Diagram (% of Total Transfer)

Associated Electric Cooperative Balancing Authority Area (AECI) Results

Study Structure and Assumptions

Transfer Sensitivity	Amount	Source	Sink	Year				
Southern BAA to Santee Cooper	1000 MW	Southern BAA	Santee	2024				
			Cooper					
Load Flow Cases								
2019 Series Version 2 SERTP Models: Winter								

Transmission System Impacts

The following tables below identify any constraints attributable to the requested transfer for the contingency and scenario that resulted in the most significant loadings for the conditions studied. Other unit out scenarios or contingencies may also result in constraints to these or other facilities.

Table V.2.1. Pass 0 – Transmission System Impacts with No Enhancements – AECI

The following table identifies significant *AECI* thermal constraints without any enhancements to the transmission system.

			Thermal Lo	oadings (%)			
AREA	Limiting Element	Rating (MVA)	Without Request	With Request	Contingency	Scenario	Project
AECI	None Identified	-	_	-	-	-	—

Scenario Explanations:

Table V.2.2. Pass 1 – Potential Future Transmission System Impacts – AECI

The following table depicts thermal loadings of **AECI** transmission facilities that could become potential constraints in future years or with different queuing assumptions but are not overloaded in the study year with all proposed enhancements to the transmission system.

			Thermal L	oadings (%)			
AREA	Limiting Element	Rating (MVA)	Without Request	With Request	Contingency	Scenario	Project
AECI	None Identified						

Scenario Explanations:

Table V.2.3. Potential Solutions for Identified Problems – AECI

The following table lists any potential solutions that were identified to address the attributable constraints based on the assumptions used in this study. It must be noted that changes to the load forecast, and/or changes in the expansion plan could occur and would impact the results of this study. In addition, the currently projected improvements to the transmission system were modeled in the cases. Changes to system conditions and/or the transmission expansion plans could also impact the results of this study.

Item	Potential Solution	Estimated Need Date	Planning Level Cost Estimate
	None Required		
	\$0 ⁽¹⁾		

2019 Economic Planning Studies

Duke Carolinas Balancing Authority Area (DEC) Results

Study Structure and Assumptions

Transfer Sensitivity	Amount	Source	Sink	Year				
Southern BAA to Santee Cooper	1000 MW	Southern BAA	Santee Cooper	2024				
Load Flow Cases								
2019 Series Version 2 SERTP Models: Winter								

Transmission System Impacts

The following tables below identify any constraints attributable to the requested transfer for the contingency and scenario that resulted in the most significant loadings for the conditions studied. Other unit out scenarios or contingencies may also result in constraints to these or other facilities.

Table V.3.1. Pass 0 – Transmission System Impacts with No Enhancements – DEC

The following table identifies significant **DEC** thermal constraints without any enhancements to the transmission system.

			Thermal Lo	oadings (%)			
AREA	Limiting Element	Rating (MVA)	Without Request	With Request	Contingency	Scenario	Project
DEC	None Identified	_	_	-	-	_	_

Scenario Explanations:

Table V.3.2. Pass 1 – Potential Future Transmission System Impacts – DEC

The following table depicts thermal loadings of **DEC** transmission facilities that could become potential constraints in future years or with different queuing assumptions but are not overloaded in the study year with all proposed enhancements to the transmission system.

			Thermal L	oadings (%)			
AREA	Limiting Element	Rating (MVA)	Without Request	With Request	Contingency	Scenario	Project
DEC	None Identified						

Scenario Explanations:

Table V.3.3. Potential Solutions for Identified Problems – DEC

The following table lists any potential solutions that were identified to address the attributable constraints based on the assumptions used in this study. It must be noted that changes to the load forecast, and/or changes in the expansion plan could occur and would impact the results of this study. In addition, the currently projected improvements to the transmission system were modeled in the cases. Changes to system conditions and/or the transmission expansion plans could also impact the results of this study.

ltem	Potential Solution	Estimated Need Date	Planning Level Cost Estimate						
	None Required								
	DEC TOTAL (\$2019)								

Duke Progress East Balancing Authority Area (DEPE) Results

Study Structure and Assumptions

Transfer Sensitivity	Amount	Source	Sink	Year						
Southern BAA to Santee Cooper	1000 MW	Southern BAA	Santee Cooper	2024						
	Load Flow Cases									
2019 Series Version 2 SERTP Models: Winter										

Transmission System Impacts

The following tables below identify any constraints attributable to the requested transfer for the contingency and scenario that resulted in the most significant loadings for the conditions studied. Other unit out scenarios or contingencies may also result in constraints to these or other facilities.

Table V.4.1. Pass 0 – Transmission System Impacts with No Enhancements – DEPE

The following table identifies significant **DEPE** thermal constraints without any enhancements to the transmission system.

			Thermal Lo	oadings (%)			
AREA	Limiting Element	Rating (MVA)	Without Request	With Request	Contingency	Scenario	Project
DEPE	None Identified		_	_	_	_	-

Scenario Explanations:

Table V.4.2. Pass 1 – Potential Future Transmission System Impacts – DEPE

The following table depicts thermal loadings of **DEPE** transmission facilities that could become potential constraints in future years or with different queuing assumptions but are not overloaded in the study year with all proposed enhancements to the transmission system.

			Thermal L	oadings (%)			
AREA	Limiting Element	Rating (MVA)	Without Request	With Request	Contingency	Scenario	Project
DEPE	None Identified						

Scenario Explanations:

Table V.4.3. Potential Solutions for Identified Problems – DEPE

The following table lists any potential solutions that were identified to address the attributable constraints based on the assumptions used in this study. It must be noted that changes to the load forecast, and/or changes in the expansion plan could occur and would impact the results of this study. In addition, the currently projected improvements to the transmission system were modeled in the cases. Changes to system conditions and/or the transmission expansion plans could also impact the results of this study.

ltem	Potential Solution	Estimated Need Date	Planning Level Cost Estimate					
	None Required							
	DEPE TOTAL (\$2019)							

Duke Progress West (DEPW) Results

Study Structure and Assumptions

Transfer Sensitivity	Amount	Source	Sink	Year						
Southern BAA to Sontee Cooper		Southern RAA	Santee	2024						
Southern BAA to Santee Cooper		Southern BAA	Cooper							
	Load Flow Cases									
2019 Series Version 2 SERTP Models: Winter										

Transmission System Impacts

The following tables below identify any constraints attributable to the requested transfer for the contingency and scenario that resulted in the most significant loadings for the conditions studied. Other unit out scenarios or contingencies may also result in constraints to these or other facilities.

Table V.5.1. Pass 0 – Transmission System Impacts with No Enhancements – DEPW

The following table identifies significant **DEPW** thermal constraints without any enhancements to the transmission system.

			Thermal Lo	oadings (%)			
AREA	Limiting Element	Rating (MVA)	Without Request	With Request	Contingency	Scenario	Project
DEPW	None Identified	_	-	-	-	-	—

Scenario Explanations:

Table V.5.2. Pass 1 – Potential Future Transmission System Impacts – DEPW

The following table depicts thermal loadings of **DEPW** transmission facilities that could become potential constraints in future years or with different queuing assumptions but are not overloaded in the study year with all proposed enhancements to the transmission system.

			Thermal L	oadings (%)			
AREA	Limiting Element	Rating (MVA)	Without Request	With Request	Contingency	Scenario	Project
DEPW	None Identified						

Scenario Explanations:

TRANSMISSION PLANNING

Table V.5.3. Potential Solutions for Identified Problems – DEPW

The following table lists any potential solutions that were identified to address the attributable constraints based on the assumptions used in this study. It must be noted that changes to the load forecast, and/or changes in the expansion plan could occur and would impact the results of this study. In addition, the currently projected improvements to the transmission system were modeled in the cases. Changes to system conditions and/or the transmission expansion plans could also impact the results of this study.

Item	Potential Solution	Estimated Need Date	Planning Level Cost Estimate
	None Required		\$0
	DEPW TOTAL (\$2019)		\$0 ⁽¹⁾

Gulf Power (GP) Results

Study Structure and Assumptions

Transfer Sensitivity	Amount	Source	Sink	Year						
Southern BAA to Santee Cooper		Southern BAA	Santee	2024						
Southern BAA to Santee Cooper		Southern BAA	Cooper							
	Load Flow Cases									
2019 Series Version 2 SERTP Models: Winter										

Transmission System Impacts

The following tables below identify any constraints attributable to the requested transfer for the contingency and scenario that resulted in the most significant loadings for the conditions studied. Other unit out scenarios or contingencies may also result in constraints to these or other facilities.

Table V.6.1. Pass 0 – Transmission System Impacts with No Enhancements – GP

The following table identifies significant *GP* thermal constraints without any enhancements to the transmission system.

		Thermal Loadings (%)					
AREA	Limiting Element	Rating (MVA)	Without Request	With Request	Contingency	Scenario	Project
GP	None Identified						

Scenario Explanations:

Table V.6.2. Pass 1 – Potential Future Transmission System Impacts – GP

The following table depicts thermal loadings of *GP* transmission facilities that could become potential constraints in future years or with different queuing assumptions but are not overloaded in the study year with all proposed enhancements to the transmission system.

Thermal Loadings (%)							
AREA	Limiting Element	Rating (MVA)	Without Request	With Request	Contingency	Scenario	Project
GP	None Identified						

Scenario Explanations:

Table V.6.3. Potential Solutions for Identified Problems – GP

The following table lists any potential solutions that were identified to address the attributable constraints based on the assumptions used in this study. It must be noted that changes to the load forecast, and/or changes in the expansion plan could occur and would impact the results of this study. In addition, the currently projected improvements to the transmission system were modeled in the cases. Changes to system conditions and/or the transmission expansion plans could also impact the results of this study.

Item	Potential Solution	Estimated Need Date	Planning Level Cost Estimate
	None Required		\$0
	GP TOTAL (\$2019)		\$0 ⁽¹⁾

Louisville Gas & Electric and Kentucky Utilities Balancing Authority Area (LG&E/KU) Results

Study Structure and Assumptions

Transfer Sensitivity	Amount	Source	Sink	Year		
Southern BAA to Santee Cooper	1000 MW	Southern BAA	Santee Cooper	2024		
Load Flow Cases						
2019 Series Version 2 SERTP Models: Winter						

Transmission System Impacts

The following tables below identify any constraints attributable to the requested transfer for the contingency and scenario that resulted in the most significant loadings for the conditions studied. Other unit out scenarios or contingencies may also result in constraints to these or other facilities.

Table V.7.1. Pass 0 – Transmission System Impacts with No Enhancements – LG&E/KU

The following table identifies significant *LG&E/KU* thermal constraints without any enhancements to the transmission system.

		Thermal Loadings (%)					
AREA	Limiting Element	Rating (MVA)	Without Request	With Request	Contingency	Scenario	Project
LG&E/KU	None Identified						

Scenario Explanations:

Table V.7.2. Pass 1 – Potential Future Transmission System Impacts – LG&E/KU

The following table depicts thermal loadings of *LG&E/KU* transmission facilities that could become potential constraints in future years or with different queuing assumptions but are not overloaded in the study year with all proposed enhancements to the transmission system.

			Thermal L	oadings (%)			
AREA	Limiting Element	Rating (MVA)	Without Request	With Request	Contingency	Scenario	Project
LG&E/KU	None Identified						

Scenario Explanations:

Table V.7.3. Potential Solutions for Identified Problems – LG&E/KU

The following table lists any potential solutions that were identified to address the attributable constraints based on the assumptions used in this study. It must be noted that changes to the load forecast, and/or changes in the expansion plan could occur and would impact the results of this study. In addition, the currently projected improvements to the transmission system were modeled in the cases. Changes to system conditions and/or the transmission expansion plans could also impact the results of this study.

Item	Potential Solution	Estimated Need Date	Planning Level Cost Estimate
	None Required		
	LG&E/KU TOTAL (\$2019)		\$0 ⁽¹⁾

PowerSouth Balancing Authority Area (PS) Results

Study Structure and Assumptions

Transfer Sensitivity	Amount	Source	Sink	Year			
Southern BAA to Santee Cooper	1000 MW	Southern BAA	Santee Cooper	2024			
Load Flow Cases							
2019 Series Version 2 SERTP Models: Winter							

Transmission System Impacts

The following tables below identify any constraints attributable to the requested transfer for the contingency and scenario that resulted in the most significant loadings for the conditions studied. Other unit out scenarios or contingencies may also result in constraints to these or other facilities.

Table V.8.1. Pass 0 – Transmission System Impacts with No Enhancements – PS

The following table identifies significant **PS** thermal constraints without any enhancements to the transmission system.

т		Thermal Loadings (%)					
AREA	Limiting Element	Rating (MVA)	Without Request	With Request	Contingency	Scenario	Project
PS	None Identified	_	_	_	-	_	_

Scenario Explanations:
Table V.8.2. Pass 1 – Potential Future Transmission System Impacts – PS

The following table depicts thermal loadings of **PS** transmission facilities that could become potential constraints in future years or with different queuing assumptions but are not overloaded in the study year with all proposed enhancements to the transmission system.

			Thermal L	oadings (%)			
AREA	Limiting Element	Rating (MVA)	Without Request	With Request	Contingency	Scenario	Project
PS	None Identified						

Scenario Explanations:

Table V.8.3. Potential Solutions for Identified Problems – *PS*

The following table lists any potential solutions that were identified to address the attributable constraints based on the assumptions used in this study. It must be noted that changes to the load forecast, and/or changes in the expansion plan could occur and would impact the results of this study. In addition, the currently projected improvements to the transmission system were modeled in the cases. Changes to system conditions and/or the transmission expansion plans could also impact the results of this study.

ltem	Potential Solution	Estimated Need Date	Planning Level Cost Estimate
	None Required		
	\$0 ⁽¹⁾		

(1) Total planning level cost estimate does not include the cost of projects that are included in SERTP Sponsors' expansion plans and are scheduled to be completed by winter of the study year. The studied transfer depends on these projects being in-service, and the cost to support the study transfer could be greater than the total shown above if any of these projects are delayed or cancelled.

2019 Economic Planning Studies

Southern Balancing Authority Area (SBAA) Results

Study Structure and Assumptions

Transfer Sensitivity	Amount	Source	Sink	Year			
Southern BAA to Santee Cooper	1000 MW	Southern BAA	Santee	2024			
Southern BAA to Santee Cooper	1000 10100	Southern BAA	Cooper				
Load Flow Cases							
2019 Series Version 2 SERTP Models: Winter							

Transmission System Impacts

The following tables below identify any constraints attributable to the requested transfer for the contingency and scenario that resulted in the most significant loadings for the conditions studied. Other unit out scenarios or contingencies may also result in constraints to these or other facilities.

Table V.9.1. Pass 0 – Transmission System Impacts with No Enhancements – SBAA

The following table identifies significant **SBAA** thermal constraints without any enhancements to the transmission system.

			Thermal Loadings (%)				
AREA	Limiting Element	Rating (MVA)	Without Request	With Request	Contingency	Scenario	Project
SBAA	None Identified						

Scenario Explanations:

Table V.9.2. Pass 1 – Potential Future Transmission System Impacts – SBAA

The following table depicts thermal loadings of **SBAA** transmission facilities that could become potential constraints in future years or with different queuing assumptions but are not overloaded in the study year with all proposed enhancements to the transmission system.

			Thermal L	oadings (%)			
AREA	Limiting Element	Rating (MVA)	Without Request	With Request	Contingency	Scenario	Project
SBAA	None Identified						

Scenario Explanations:

Table V.9.3. Potential Solutions for Identified Problems – SBAA

The following table lists any potential solutions that were identified to address the attributable constraints based on the assumptions used in this study. It must be noted that changes to the load forecast, and/or changes in the expansion plan could occur and would impact the results of this study. In addition, the currently projected improvements to the transmission system were modeled in the cases. Changes to system conditions and/or the transmission expansion plans could also impact the results of this study.

Item	Potential Solution	Estimated Need Date	Planning Level Cost Estimate
	None Required		
	\$0 ⁽¹⁾		

(1) Total planning level cost estimate does not include the cost of projects that are included in SERTP Sponsors' expansion plans and are scheduled to be completed by winter of the study year. The studied transfer depends on these projects being in-service, and the cost to support the study transfer could be greater than the total shown above if any of these projects are delayed or cancelled.

Tennessee Valley Authority Balancing Authority Area (TVA) Results

Study Structure and Assumptions

Transfer Sensitivity	Amount	Source	Sink	Year			
Southern to Santee Cooper	1000 MW	Southern	Santee Cooper	2024			
Load Flow Cases							
2024 Series Version 2 SERTP Models: Winter							

Transmission System Impacts

The following tables below identify any constraints attributable to the requested transfer for the contingency and scenario that resulted in the most significant loadings for the conditions studied. Other unit out scenarios or contingencies may also result in constraints to these or other facilities.

Table V.10.1. Pass 0 – Transmission System Impacts with No Enhancements – TVA

The following table identifies significant *TVA* thermal constraints without any enhancements to the transmission system.

			Thermal Lo	oadings (%)			
AREA	Limiting Element	Rating (MVA)	Without Request	With Request	Contingency	Scenario	Project
TVA	None Identified	_	_	_	-	_	_

Scenario Explanations:

Table V.10.2. Pass 1 – Potential Future Transmission System Impacts – TVA

The following table depicts thermal loadings of **TVA** transmission facilities that could become potential constraints in future years or with different queuing assumptions but are not overloaded in the study year with all proposed enhancements to the transmission system.

			Thermal L	oadings (%)			
AREA	Limiting Element	Rating (MVA)	Without Request	With Request	Contingency	Scenario	Project
TVA	None Identified						

Scenario Explanations:

Table V.10.3. Potential Solutions for Identified Problems – TVA

The following table lists any potential solutions that were identified to address the attributable constraints based on the assumptions used in this study. It must be noted that changes to the load forecast, and/or changes in the expansion plan could occur and would impact the results of this study. In addition, the currently projected improvements to the transmission system were modeled in the cases. Changes to system conditions and/or the transmission expansion plans could also impact the results of this study.

ltem	Potential Solution	Estimated Need Date	Planning Level Cost Estimate
	None Required		
	\$0 ⁽¹⁾		

(1) Total planning level cost estimate does not include the cost of projects that are included in SERTP Sponsors' expansion plans and are scheduled to be completed by winter of the study year. The studied transfer depends on these projects being in-service, and the cost to support the study transfer could be greater than the total shown above if any of these projects are delayed or cancelled.