

SERTP Southeastern Regional Transmission Planning

Southeastern

TRANSMISSION PLANNING

Regional

Table of Contents

Overvie	ew of Economic Planning Studies	1
1.	Study Request 1 Results	5
2.	Southern Company to Duke Energy Carolinas - Summer 2032 Study Request 2 Results	.35
3.	South Carolina Electric and Gas to Duke Energy Carolinas - Summer 2032 Study Request 3 Results	.66
4.	Southern Company to Santee Cooper - Winter 2027 Study Request 4 Results	.96
5.	Southern Company to Santee Cooper - Summer 2024 Study Request 5 Results	126
6.	Duke Energy Carolinas to Santee Cooper - Winter 2027 Appendix I	156

Overview of Economic Planning Studies

Executive Summary

The Regional Planning Stakeholder Group ("RPSG") identified five (5) economic planning studies to be evaluated under the Southeastern Regional Transmission Planning ("SERTP") process. The SERTP Sponsors have performed analyses to assess potential constraints on the transmission systems of the participating transmission owners for the stakeholder requested economic planning studies selected by the Regional Planning Stakeholder Group ("RPSG"). The assessments include the identification of potentially limiting facilities, the impact of the transfers on these facilities, and the contingency conditions causing the limitations. The assessments also identify potential transmission enhancements within the footprint of the participating transmission owners necessary to accommodate the economic planning study requests, planning-level cost estimates, and the projected need-date for projects to accommodate the economic planning study requests. The information contained in this report does not represent a commitment to proceed with the recommended enhancements nor implies that the recommended enhancements could be implemented by the study dates. The assessment cases model the currently projected improvements to the transmission system. However, changes to system conditions and/or the transmission system expansion plans could also impact the results of this study. Planning staff of the participating transmission owners performed the assessments and the results are summarized in this report.

Study Assumptions

The specific assumptions selected for these evaluations were:

- Each request was evaluated for the year identified below, as selected by the RPSG
- The following economic planning studies were assessed:

1) SOCO to DEC - 1000 MW

Southeastern

TRANSMISSION PLANNING

Regional

- Year: 2032
- Load Level: Summer Peak
- Type of Transfer: Generation to Generation
- Source: Generation within SOCO
- Sink: Generation within DEC

2) DESC (Formally SCEG) to DEC – 1000 MW

- Year: 2032
- Load Level: Summer Peak
- Type of Transfer: Generation to Generation
- Source: Generation within SCE&G
- Sink: Generation within DEC

3) SOCO to SC - 600 MW

- Year: 2027
- Load Level: Winter Peak
- Type of Transfer: Generation to Generation
- Source: Generation within SOCO
- Sink: Generation within SC

4) SOCO to SC- 500 MW

- Year: 2024
- Load Level: Summer Peak
- Type of Transfer: Generation to Generation
- Source: Generation within SOCO
- Sink: Generation within SC

5) DEC to SC- 600 MW

- Year: 2027
- Load Level: Winter Peak
- Type of Transfer: Generation to Generation
- Source: Generation within DEC
- Sink: Generation within SC

Case Development

• For all evaluations, the **2022 Series Version 1 SERTP Regional Models** were used as a starting point load flow cases for the analysis of the Economic Planning Scenarios.

Study Criteria

The study criteria with which results were evaluated included the following reliability elements:

- NERC Reliability Standards
- Individual company criteria (voltage, thermal, stability, and short circuit as applicable)

Methodology

Initially, power flow analyses were performed based on the assumption that thermal limits were the controlling limit for the reliability plan. Voltage, stability, and short circuit studies were performed if circumstances warranted.

Technical Analysis and Study Results

The technical analysis was performed in accordance with the study methodology. Results from the technical analysis were reported throughout the study area to identify transmission elements approaching their limits such that all participating transmission owners and stakeholders would be aware of any potential issues and, as such, suggest appropriate solutions to address the potential issues if necessary. The SERTP reported, at a minimum, results for monitored transmission elements within the participating transmission owners' footprint based on:

- Thermal loadings greater than 90% for facilities that are negatively impacted by the proposed transfers and change by +5% of applicable rating with the addition of the transfer(s)
- Voltages appropriate to each participating transmission owner's planning criteria (with potential solutions if criteria were violated)

Assessment and Problem Identification

The participating transmission owners ran assessments to identify any constraints within the participating transmission owners' footprint as a result of the economic planning study requests. Each participating transmission owner applied their respective reliability criteria for its facilities and any constraints identified were documented and reviewed by each participating transmission owner.

Solution Development

• The participating transmission owners, with input from the stakeholders, will develop potential solution alternatives due to the economic planning studies requested by the RPSG.

- The participating transmission owners will test the effectiveness of the potential solution alternatives using the same cases, methodologies, assumptions and criteria described above.
- The participating transmission owners will develop rough, planning-level cost estimates and in-service dates for the selected solution alternatives.

Report on the Study Results

Southeastern

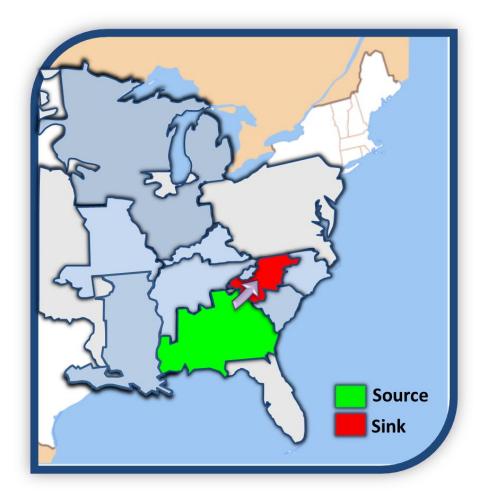
TRANSMISSION PLANNING

Regional

The participating transmission owners compiled all the study results and prepared a report for review by the stakeholders. The report contains the following:

- A description of the study approach and key assumptions for the Economic Planning Scenarios
- For each economic planning study request, the results of that study including:
 - 1. Limit(s) to the transfer
 - 2. Selected solution alternatives to address the limit(s)
 - 3. Rough, planning-level cost estimates and in-service dates for the selected transmission solution alternatives

2022 Economic Planning Studies


1. Study Request 1 Results

Southeastern

TRANSMISSION PLANNING

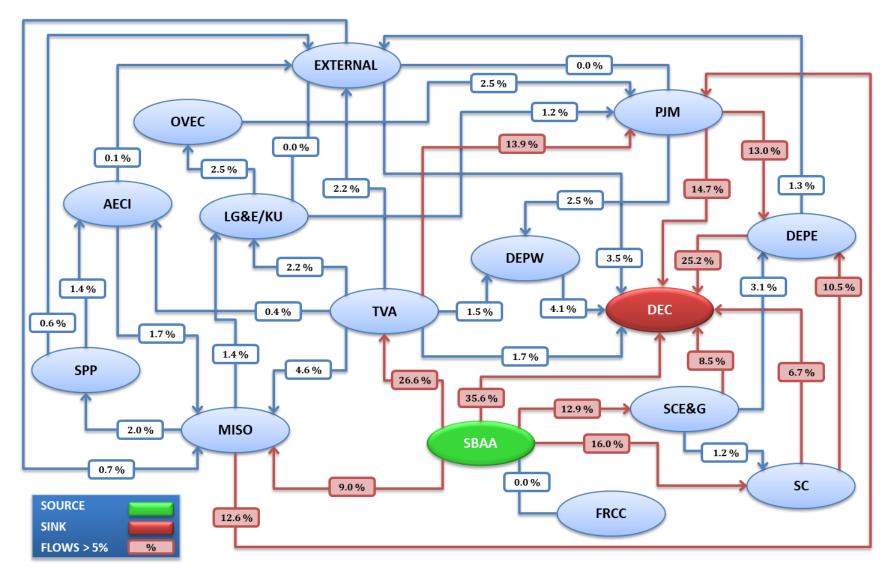
Regional

Southern Company to Duke Energy Carolinas - Summer 2032 1000 MW

12

Table I.1.1. Total Cost Identified by the SERTP Sponsors

Balancing Authority Area	Planning Level Cost Estimate
Associated Electric Cooperative (AECI)	\$0
Duke Carolinas (DEC)	\$169,000,000
Duke Progress East (DEPE)	\$0
Duke Progress West (DEPW)	\$0
Gulf Power (GP)	\$0
Louisville Gas & Electric and Kentucky Utilities (LG&E/KU)	\$0
PowerSouth (PS)	\$0
Southern (SBAA)	\$5,130,000
Tennessee Valley Authority (TVA)	\$0
TOTAL (\$2022)	\$253,387,000


2022 Economic Planning Studies

TRANSMISSION PLANNING

Southeastern

Regional

Diagram I.1.1. Transfer Flow Diagram (% of Total Transfer)

Associated Electric Cooperative Balancing Authority Area (AECI) Results

Study Structure and Assumptions

Regional

Transfer Sensitivity	Amount	Source	Sink	Year			
SOCO to DEC	1000 MW	SOCO	DEC	2032			
Load Flow Cases							
2022 Series Version 1 SERTP Models: Summer Peak							

Transmission System Impacts

The following tables below identify any constraints attributable to the requested transfer for the contingency and scenario that resulted in the most significant loadings for the conditions studied. Other unit out scenarios or contingencies may also result in constraints to these or other facilities.

Table I.2.1. Pass 0 – Transmission System Impacts with No Enhancements – AECI

The following table identifies significant **AECI** thermal constraints without any enhancements to the transmission system.

Thermal			oadings (%)				
Area	Limiting Element	Rating (MVA)	Without Request	With Request	Contingency	Scenario	Project
AECI	None Identified						

Scenario Explanations:

Table I.2.2. Pass 1 – Potential Future Transmission System Impacts – AECI

The following table depicts thermal loadings of **AECI** transmission facilities that could become potential constraints in future years or with different queuing assumptions but are not overloaded in the study year with all proposed enhancements to the transmission system.

Define Mithewise Mithe	
Area Limiting Element Rating (MVA) Without Request With Contingency Scenario	Project
AECI None Identified	

Scenario Explanations:

TRANSMISSION PLANNING

Southeastern

Regional

Table I.2.3. Potential Solutions for Identified Problems – AECI

The following table lists any potential solutions that were identified to address the significant thermal constraints in order to meet the request and assumptions used in the study. It must be noted that changes to the load forecast, and/or changes in the expansion plan could occur and would impact the results of this study. In addition, the currently projected improvements to the transmission system were modeled in the cases. Changes to system conditions and/or the transmission expansion plans could also impact the results of this study.

Item	Potential Solution	Estimated Need Date	Planning Level Cost Estimate				
	None Required						
	AECI TOTAL (\$2022)						

Duke Carolinas Balancing Authority Area (DEC) Results

Study Structure and Assumptions

Transfer Sensitivity	Amount	Source	Sink	Year			
SOCO to DEC	1000 MW	SOCO	DEC	2032			
Load Flow Cases							
2022 Series Version 1 SERTP Models: Summer Peak							

Transmission System Impacts

The following tables below identify any constraints attributable to the requested transfer for the contingency and scenario that resulted in the most significant loadings for the conditions studied. Other unit out scenarios or contingencies may also result in constraints to these or other facilities.

Table I.3.1. Pass 0 – Transmission System Impacts with No Enhancements – DEC

The following table identifies significant **DEC** thermal constraints without any enhancements to the transmission system.

			Thermal Loadings (%)				
Area	Limiting Element	Rating (MVA)			Contingency	Scenario	Project
DEC	Lee Steam – Shady Grove Tie 100 kV TL (Lee Line)	132	88.1	94.5	Loboe on Lee Steam – Greenbriar Switching Station 100 kV T.L.	1	1
DEC	Lee Steam – Shady Grove Tie 100 kV TL (Piedmont Line Line)	132	94.5	101	Loboe on Lee Steam – Greenbriar Switching Station 100 kV T.L.	1	1
DEC	Wateree Switching – Great Falls Switching	116	89	116.1	Loss of Newport – VC Sumner 230 kV TL	2	2
DEC	Catawba Nuclear – Allen Steam 230 kV TL	1055	92.6	104.1	Loss of Parallel Catawba Nuclear – Allen Steam 230 kV TL	3	NA*

Scenario Explanations:

1. Asheboro unit 7 offline (DEPW)

2. Catawba Nuclear Unit 1 Offline

3. McGuire Nuclear Unit 1 Offline

* Project not in current version of models, but is in expansion plan

Southeastern

Regional

Table I.3.2. Pass 1 – Potential Future Transmission System Impacts – DEC

The following table depicts thermal loadings of **DEC** transmission facilities that could become potential constraints in future years or with different queuing assumptions but are not overloaded in the study year with all proposed enhancements to the transmission system.

			Thermal L	oadings (%)			
Area	Limiting Element	Rating (MVA)	<u> </u>		Contingency	Scenario	Project
DEC	Lee Combustion – Belton Tie 100 kV TL	132	77.7	92.1	Loss of parallel Lee Combustion – Belton Tie 100 kV TL	1	A1*
DEC	Clark Hill 115/100 kV Transformer	125	91.4	96.6	Loss of Santee Cooper 115 kV TL	1	A2*
DEC	Central Tie – Shady Grove Tie 230 kV TL	464	87.8	94.1	Loss of parallel Central Tie – Shady Grove Tie 230 kV TL	1	A3*
DEC	Lee Combustion – Toxaway Tie 100 kV TL	105	88.3	98.1	Loss of Parallel Lee Combustion – Toxaway Tie 100 kV TL	1	A4*
DEC	Riverbend Switching – Dixon School Rd Switching 230 kV TL	752	80.4	91.1	Loss of Parallel Riverbend Switching – Dixon School Rd Switching 230 kV TL	2	A5*

Scenario Explanations:

1. Lee Combustion Turbine Offline

2. McGuire Unit 1 Offline

*Solutions are presented in Appendix I

Table I.3.3. Potential Solutions for Identified Significant Problems – DEC

The following table lists any potential solutions that were identified to address the significant thermal constraints in order to meet the request and assumptions used in the study. It must be noted that changes to the load forecast, and/or changes in the expansion plan could occur and would impact the results of this study. In addition, the currently projected improvements to the transmission system were modeled in the cases. Changes to system conditions and/or the transmission expansion plans could also impact the results of this study.

Item	Potential Solution	Estimated Need Date	Planning Level Cost Estimate				
1	Lee Steam – Shady Grove Tie 100 kV TL Rebuild both Lee Steam – Shady Grove double circuit transmission lines with 1158 ACSS/TW rated at 200°C (24.5 total miles)	2032	\$90,000,000				
2	Wateree Switching – Great Falls Switching 100 kV TL Rebuild the Wateree Switching – Great Falls Switching 100 kV TL with 954 ACSR rated at 120 °C (19.8 miles)	2032	\$79,000,000				
	DEC TOTAL (\$2022)						

Duke Progress East Balancing Authority Area (DEPE) Results

Study Structure and Assumptions

Transfer Sensitivity	Amount	Source	Sink	Year			
SOCO to DEC	1000 MW	SOCO	DEC	2032			
Load Flow Cases							
2022 Series Version 1 SERTP Models: Summer Peak							

Transmission System Impacts

The following tables below identify any constraints attributable to the requested transfer for the contingency and scenario that resulted in the most significant loadings for the conditions studied. Other unit out scenarios or contingencies may also result in constraints to these or other facilities.

Table I.4.1. Pass 0 – Transmission System Impacts with No Enhancements – DEPE

The following table identifies significant **DEPE** thermal constraints without any enhancements to the transmission system.

	Thermal Loadings (%)						
Area	Limiting Element	Rating (MVA)	Without Request	With Request	Contingency	Scenario	Project
DEPE	None Identified						

Scenario Explanations:

Table I.4.2. Pass 1 – Potential Future Transmission System Impacts – DEPE

The following table depicts thermal loadings of **DEPE** transmission facilities that could become potential constraints in future years or with different queuing assumptions but are not overloaded in the study year with all proposed enhancements to the transmission system.

Area Limiting Element Rating Without With Contingency Scena	
(MVA) Request Request	Project
DEPE None Identified	

Scenario Explanations:

Table I.4.3. Potential Solutions for Identified Problems – DEPE

Southeastern

TRANSMISSION PLANNING

Regional

The following table lists any potential solutions that were identified to address the significant thermal constraints in order to meet the request and assumptions used in the study. It must be noted that changes to the load forecast, and/or changes in the expansion plan could occur and would impact the results of this study. In addition, the currently projected improvements to the transmission system were modeled in the cases. Changes to system conditions and/or the transmission expansion plans could also impact the results of this study.

ltem	Potential Solution	Estimated Need Date	Planning Level Cost Estimate					
	None Required							
	DEPE TOTAL (\$2022)							

Duke Progress West (DEPW) Results

Study Structure and Assumptions

Transfer Sensitivity Amount Source Sink Year										
SOCO to DEC 1000 MW SOCO DEC 2032										
Load Flow Cases										
2022 Serie	2022 Series Version 1 SERTP Models: Summer Peak									

Transmission System Impacts

The following tables below identify any constraints attributable to the requested transfer for the contingency and scenario that resulted in the most significant loadings for the conditions studied. Other unit out scenarios or contingencies may also result in constraints to these or other facilities.

Table I.5.1. Pass 0 – Transmission System Impacts with No Enhancements – DEPW

The following table identifies significant **DEPW** thermal constraints without any enhancements to the transmission system.

		Thermal Loadings (%)		oadings (%)			
Area	Limiting Element	Rating (MVA)	Without Request	With Request	Contingency	Scenario	Project
DEPW	None Identified						

Scenario Explanations:

Table I.5.2. Pass 1 – Potential Future Transmission System Impacts – DEPW

The following table depicts thermal loadings of **DEPW** transmission facilities that could become potential constraints in future years or with different queuing assumptions but are not overloaded in the study year with all proposed enhancements to the transmission system.

AreaLimiting ElementRating (MVA)Without RequestWith RequestContingencyScenarioProjectDEPWNone Identified				Thermal L	oadings (%)			
DEPW None Identified	Area	Limiting Element	U U			Contingency	Scenario	Project
	DEPW	None Identified						

Scenario Explanations:

Table I.5.3. Potential Solutions for Identified Problems – DEPW

The following table lists any potential solutions that were identified to address the significant thermal constraints in order to meet the request and assumptions used in the study. It must be noted that changes to the load forecast, and/or changes in the expansion plan could occur and would impact the results of this study. In addition, the currently projected improvements to the transmission system were modeled in the cases. Changes to system conditions and/or the transmission expansion plans could also impact the results of this study.

Item	Potential Solution	Estimated Need Date	Planning Level Cost Estimate
	None Required		
	DEPW TOTAL (\$2022)		\$0 ⁽¹⁾

Gulf Power (GP) Results

Study Structure and Assumptions

Transfer Sensitivity Amount Source Sink Year										
SOCO to DEC 1000 MW SOCO DEC 2032										
Load Flow Cases										
2022 Serie	2022 Series Version 1 SERTP Models: Summer Peak									

Transmission System Impacts

The following tables below identify any constraints attributable to the requested transfer for the contingency and scenario that resulted in the most significant loadings for the conditions studied. Other unit out scenarios or contingencies may also result in constraints to these or other facilities.

Table I.6.1. Pass 0 – Transmission System Impacts with No Enhancements – GP

The following table identifies significant *GP* thermal constraints without any enhancements to the transmission system.

			Thermal L	oadings (%)			
Area	Limiting Element	Rating (MVA)	Without Request	With Request	Contingency	Scenario	Project
GP	None Identified				-		

Scenario Explanations:

Table I.6.2. Pass 1 – Potential Future Transmission System Impacts – GP

The following table depicts thermal loadings of *LG&E/KU* transmission facilities that could become potential constraints in future years or with different queuing assumptions but are not overloaded in the study year with all proposed enhancements to the transmission system.

			Thermal Lo	oadings (%)			
Area	Limiting Element	Rating (MVA)	Without Request	With Request	Contingency	Scenario	Project
GP	None Identified				-		

Scenario Explanations:

TRANSMISSION PLANNING

Southeastern

Regional

Table I.6.3. Potential Solutions for Identified Problems – GP

The following table lists any potential solutions that were identified to address the significant thermal constraints in order to meet the request and assumptions used in the study. It must be noted that changes to the load forecast, and/or changes in the expansion plan could occur and would impact the results of this study. In addition, the currently projected improvements to the transmission system were modeled in the cases. Changes to system conditions and/or the transmission expansion plans could also impact the results of this study.

ltem	Potential Solution	Estimated Need Date	Planning Level Cost Estimate				
	None Required						
	GP TOTAL (\$2022)						

Louisville Gas & Electric and Kentucky Utilities Balancing Authority Area (LG&E/KU) Results

Study Structure and Assumptions

Southeastern

TRANSMISSION PLANNING

Regional

Transfer Sensitivity	Transfer Sensitivity Amount Source Sink Year										
SOCO to DEC 1000 MW SOCO DEC 2											
Load Flow Cases											
2022 Serie	es Version 1 SERTP	Models: Summer Pe	eak								

Transmission System Impacts

The following tables below identify any constraints attributable to the requested transfer for the contingency and scenario that resulted in the most significant loadings for the conditions studied. Other unit out scenarios or contingencies may also result in constraints to these or other facilities.

Table I.7.1. Pass 0 – Transmission System Impacts with No Enhancements – LG&E/KU

The following table identifies significant *LG&E/KU* thermal constraints without any enhancements to the transmission system.

				Thermal Lo	oadings (%)			
	Area	Limiting Element	Rating (MVA)	Without Request	With Request	Contingency	Scenario	Project
LG	6&E/KU	None Identified				-		

Scenario Explanations:

Table I.7.2. Pass 1 – Potential Future Transmission System Impacts – LG&E/KU

The following table depicts thermal loadings of *LG&E/KU* transmission facilities that could become potential constraints in future years or with different queuing assumptions but are not overloaded in the study year with all proposed enhancements to the transmission system.

AreaLimiting ElementRating (MVA)Without RequestWith RequestContingencyScenarioProjectLG&E/KUNone Identified				Thermal Lo	oadings (%)			
LG&E/KU None Identified	Area	Limiting Element	0			Contingency	Scenario	Project
	LG&E/KU	None Identified						

Scenario Explanations:

Table 1.7.3. Potential Solutions for Identified Problems – LGE/KU

Southeastern

TRANSMISSION PLANNING

Regional

The following table lists any potential solutions that were identified to address the significant thermal constraints in order to meet the request and assumptions used in the study. It must be noted that changes to the load forecast, and/or changes in the expansion plan could occur and would impact the results of this study. In addition, the currently projected improvements to the transmission system were modeled in the cases. Changes to system conditions and/or the transmission expansion plans could also impact the results of this study.

Item	Potential Solution	Estimated Need Date	Planning Level Cost Estimate				
	None Required						
	LGE/KU TOTAL (\$2022)						

PowerSouth (PS) Results

Study Structure and Assumptions

Transfer Sensitivity	Amount	Source	Sink	Year					
SOCO to DEC 1000 MW SOCO DEC 2032									
Load Flow Cases									
2022 Serie	es Version 1 SERTP	Models: Summer Pe	eak						

Transmission System Impacts

The following tables below identify any constraints attributable to the requested transfer for the contingency and scenario that resulted in the most significant loadings for the conditions studied. Other unit out scenarios or contingencies may also result in constraints to these or other facilities.

Table I.8.1. Pass 0 – Transmission System Impacts with No Enhancements – PS

The following table identifies significant **PS** thermal constraints without any enhancements to the transmission system.

			Thermal Lo	oadings (%)			
Area	Limiting Element	Rating (MVA)	Without Request	With Request	Contingency	Scenario	Project
PS	None Identified						

Scenario Explanations:

Table I.8.2. Pass 1 – Potential Future Transmission System Impacts – PS

The following table depicts thermal loadings of **PS** transmission facilities that could become potential constraints in future years or with different queuing assumptions but are not overloaded in the study year with all proposed enhancements to the transmission system.

			Thermal L	oadings (%)			
Area	Limiting Element	Rating (MVA)	Without Request	With Request	Contingency	Scenario	Project
PS	None Identified				-		

Scenario Explanations:

TRANSMISSION PLANNING

Southeastern

Regional

Table I.8.3. Potential Solutions for Identified Problems – PS

The following table lists any potential solutions that were identified to address the significant thermal constraints in order to meet the request and assumptions used in the study. It must be noted that changes to the load forecast, and/or changes in the expansion plan could occur and would impact the results of this study. In addition, the currently projected improvements to the transmission system were modeled in the cases. Changes to system conditions and/or the transmission expansion plans could also impact the results of this study.

Item	Potential Solution	Estimated Need Date	Planning Level Cost Estimate				
	None Required						
	PS TOTAL (\$2022)						

2022 Economic Planning Studies

Southern Balancing Authority Area (SBAA) Results

Study Structure and Assumptions

Transfer Sensitivity	Amount	Source	Sink	Year					
SOCO to DEC 1000 MW SOCO DEC 2032									
Load Flow Cases									
2022 Serie	es Version 1 SERTP	Models: Summer Po	eak						

Transmission System Impacts

The following tables below identify any constraints attributable to the requested transfer for the contingency and scenario that resulted in the most significant loadings for the conditions studied. Other unit out scenarios or contingencies may also result in constraints to these or other facilities.

Table I.9.1. Pass 0 – Transmission System Impacts with No Enhancements – SBAA

The following table identifies significant **SBAA** thermal constraints without any enhancements to the transmission system.

			Thermal L	oadings (%)			
Area	Limiting Element	Rating (MVA)	Without With Request Request		Contingency	Scenario	Project
SBAA	381331 3SIGMAN RD 115.00 381914 3CORNISH MTN 115.00 1	188	95.1	101.1	380096 6CONYERS 230.00 380465 3CONYERS 115.00 1	1	P1
SBAA	380294 3FAIRBURN SW 115.00 380309 3FIFE 115.00 1	79	94.9	103	380023 8WANSLEY 500.00 383034 8HEARD CO 500.00 1	1	NA*
SBAA	380294 3FAIRBURN SW 115.00 380311 30WENS 1 J 115.00 1	79	95.0	95.0 103 380023 8WANSLEY 500.00 383034 8HEARD CO 500.00 1		1	NA*
SBAA	380129 6S COWETA 230.00 380719 3S COWETA B1 115.00 1	437	97.9	103.2	380023 8WANSLEY 500.00 383034 8HEARD CO 500.00 1	1	NA*
SBAA	381129 3HAMMOND B3 115.00 384327 3CENTRESS 115.00 1	112	90.1	101.2	380182 6HAMMOND 230.00 385297 6GOSHENTP 230.00 1	2	NA*
SBAA	380623 3LAGRANGE 3 115.00 380624 3RAGLAND ST 115.00 1	216	88.3	102.3	380124 6LAGRANGE B2 230.00 381594 6DRESDEN 230.00 1	3	NA*
SBAA	380624 3RAGLAND ST 115.00 380625 3LAGRANGE B1 115.00 1	216	89.8	103.5	380124 6LAGRANGE B2 230.00 381594 6DRESDEN 230.00 1	3	NA*
SBAA	381524 3N LAGRANGE 115.00 381590 3MOBLEY BR 115.00 1	155	97.0	120.7	380124 6LAGRANGE B2 230.00 381594 6DRESDEN 230.00 1	3	NA*
SBAA	381525 3HOGANSVL 2J 115.00 381590 3MOBLEY BR 115.00 1	155	90.8	111.5	380124 6LAGRANGE B2 230.00 381594 6DRESDEN 230.00 1	3	NA*
SBAA	380124 6LAGRANGE B2 230.00 381594 6DRESDEN 230.00 1	567	88.6	113.6	380010 8FORTSON 500.00 383033 8TENASKA GA 500.00 1	3	NA*
SBAA	380580 3CLITO 115.00 381483 3DOVER TP 115.00 1	63	93.8	100.2	380572 3MILLEN 115.00 380573 3MILLEN PR 115.00 1	4	NA*

*Project not in current version of models, but is in the 2022 Expansion Plan

Scenario Explanations:

- 1. No Unit Out of Service
- 2. McIntosh 10 Unit Out of Service
- 3. Monroe Unit Out of Service

Scenario Explanations:

4. VC Summer Unit Out of Service

Table I.9.2. Pass 1 – Potential Future Transmission System Impacts – SBAA

The following table depicts thermal loadings of **SBAA** transmission facilities that could become potential constraints in future years or with different queuing assumptions but are not overloaded in the study year with all proposed enhancements to the transmission system.

			Thermal Lo	oadings (%)			
Area	Limiting Element	Rating (MVA)	Without Request	With Request	Contingency	Scenario	Project
SBAA	None Identified						

Scenario Explanations:

TRANSMISSION PLANNING

Southeastern

Regional

Table I.9.3. Potential Solutions for Identified Problems – SBAA

The following table lists any potential solutions that were identified to address the significant thermal constraints in order to meet the request and assumptions used in the study. It must be noted that changes to the load forecast, and/or changes in the expansion plan could occur and would impact the results of this study. In addition, the currently projected improvements to the transmission system were modeled in the cases. Changes to system conditions and/or the transmission expansion plans could also impact the results of this study.

ltem	Potential Solution	Estimated Need Date	Planning Level Cost Estimate				
P1	Rebuild the Spellman – Cornish Mountain 115kV section, approximately 5.3 miles of 100C 636.0 ACSR	2032	\$5,130,000				
	SBAA TOTAL (\$2022)						

Tennessee Valley Authority Balancing Authority Area (TVA) Results

Study Structure and Assumptions

Regional

Transfer Sensitivity	Amount	Source	Sink	Year					
SOCO to DEC 1000 MW SOCO DEC 2032									
Load Flow Cases									
2022 Serie	2022 Series Version 1 SERTP Models: Summer Peak								

Transmission System Impacts

The following tables below identify any constraints attributable to the requested transfer for the contingency and scenario that resulted in the most significant loadings for the conditions studied. Other unit out scenarios or contingencies may also result in constraints to these or other facilities.

Table I.10.1. Pass 0 – Transmission System Impacts with No Enhancements – TVA

The following table identifies significant TVA thermal constraints without any enhancements to the transmission system.

			Thermal L	oadings (%)			
Area	Limiting Element	Rating (MVA)	Without Request	With Request	Contingency	Scenario	Project
TVA	None Identified	-	-	-	-	-	-

Scenario Explanations:

Table I.10.2. Pass 1 – Potential Future Transmission System Impacts – TVA

The following table depicts thermal loadings of **TVA** transmission facilities that could become potential constraints in future years or with different queuing assumptions but are not overloaded in the study year with all proposed enhancements to the transmission system.

				oadings (%)			
Area	Limiting Element	Rating (MVA)	Without Request	With Request	Contingency	Scenario	Project
TVA	None Identified						

Scenario Explanations:

Table I.10.3. Potential Solutions for Identified Problems – TVA

Southeastern

TRANSMISSION PLANNING

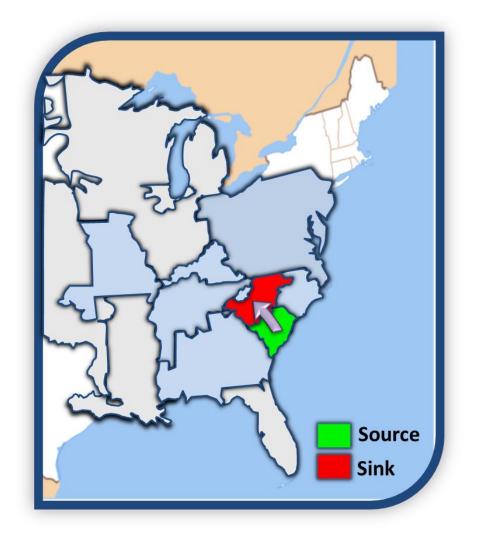
Regional

The following table lists any potential solutions that were identified to address the significant thermal constraints in order to meet the request and assumptions used in the study. It must be noted that changes to the load forecast, and/or changes in the expansion plan could occur and would impact the results of this study. In addition, the currently projected improvements to the transmission system were modeled in the cases. Changes to system conditions and/or the transmission expansion plans could also impact the results of this study.

Item	m Potential Solution		Planning Level Cost Estimate	
	None Required			
	\$0 ⁽¹⁾			

2022 Economic Planning Studies

2. Study Request 2 Results


Southeastern

TRANSMISSION PLANNING

Regional

Dominion Energy (Formerly South Carolina Electric and Gas) to Duke Energy Carolinas - Summer 2032

1000 MW

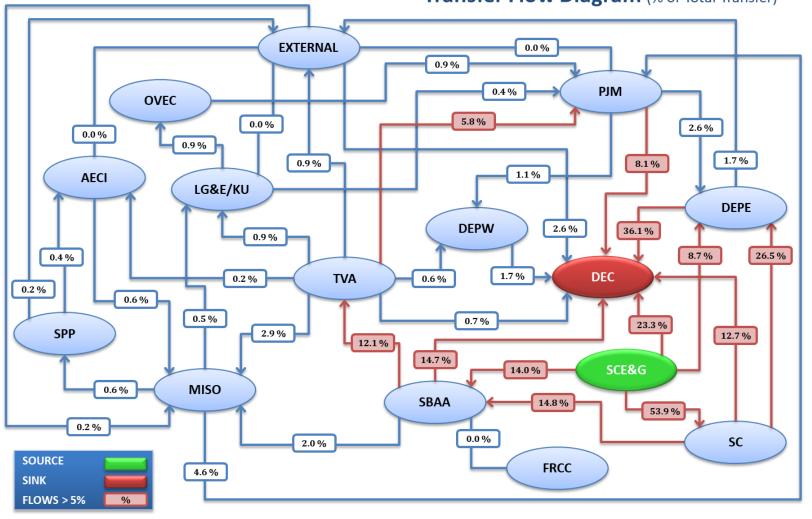


Table II.1.1. Total Cost Identified by the SERTP Sponsors

Balancing Authority Area	Planning Level Cost Estimate
Associated Electric Cooperative (AECI)	\$0
Duke Carolinas (DEC)	\$221,000,000
Duke Progress East (DEPE)	\$0
Duke Progress West (DEPW)	\$0
Gulf Power (GP)	\$0
Louisville Gas & Electric and Kentucky Utilities (LG&E/KU)	\$0
PowerSouth (PS)	\$0
Southern (SBAA)	\$0
Tennessee Valley Authority (TVA)	\$0
TOTAL (\$2022)	\$221,000,000

Diagram II.1.1. Transfer Flow Diagram (% of Total Transfer)

Transfer Flow Diagram (% of Total Transfer)

1

Associated Electric Cooperative Balancing Authority Area (AECI) Results

Study Structure and Assumptions

Regional

Transfer Sensitivity	Amount	Source	Sink	Year					
DESC (SCEG) to DEC	1000 MW	1000 MW DESC (SCEG)		2032					
	Load Flow Cases								
2022 Series Version 1 SERTP Models: Summer Peak									

Transmission System Impacts

The following tables below identify any constraints attributable to the requested transfer for the contingency and scenario that resulted in the most significant loadings for the conditions studied. Other unit out scenarios or contingencies may also result in constraints to these or other facilities.

Table II.2.1. Pass 0 – Transmission System Impacts with No Enhancements – AECI

The following table identifies significant **AECI** thermal constraints without any enhancements to the transmission system.

	Thermal Loadings (%)						
Area	Limiting Element	Rating (MVA)	Without Request	With Request	Contingency	Scenario	Project
AECI	None Identified	-		-	-	-	

Scenario Explanations:

Table II.2.2. Pass 1 – Potential Future Transmission System Impacts – AECI

The following table depicts thermal loadings of **AECI** transmission facilities that could become potential constraints in future years or with different queuing assumptions but are not overloaded in the study year with all proposed enhancements to the transmission system.

Area Limiting Flamout Rating Without With Contingency	
Area Limiting Element Items Other Other Other Contingency Scenario	Project
AECI None Identified	

Scenario Explanations:

Table II.2.3. Potential Solutions for Identified Problems – AECI

Southeastern

TRANSMISSION PLANNING

Regional

The following table lists any potential solutions that were identified to address the significant thermal constraints in order to meet the request and assumptions used in the study. It must be noted that changes to the load forecast, and/or changes in the expansion plan could occur and would impact the results of this study. In addition, the currently projected improvements to the transmission system were modeled in the cases. Changes to system conditions and/or the transmission expansion plans could also impact the results of this study.

Item	Potential Solution	Estimated Need Date	Planning Level Cost Estimate			
	None Required					
	AECI TOTAL (\$2022)					

Duke Carolinas Balancing Authority Area (DEC) Results

Study Structure and Assumptions

Transfer Sensitivity	Amount	Source	Sink	Year				
DESC (SCEG) to DEC	1000 MW	DESC (SCEG)	DEC	2032				
Load Flow Cases								
2022 Series Version 1 SERTP Models: Summer Peak								

Transmission System Impacts

The following tables below identify any constraints attributable to the requested transfer for the contingency and scenario that resulted in the most significant loadings for the conditions studied. Other unit out scenarios or contingencies may also result in constraints to these or other facilities.

TRANSMISSION PLANNING

Regional

Southeastern

Table II.3.1. Pass 0 – Transmission System Impacts with No Enhancements – DEC

The following table identifies significant **DEC** thermal constraints without any enhancements to the transmission system.

	Thermal Loadings (%)						
Area	Limiting Element	Rating (MVA)	Without Request	With Request	Contingency	Scenario	Project
DEC	Lee Steam – Shady Grove Tie 100 kV TL (Lee Line)	132	88.1	94.9	Loboe on Lee Steam – Greenbriar Switching Station 100 kV T.L.	1	1
DEC	Lee Steam – Shady Grove Tie 100 kV TL (Piedmont Line)	132	94.5	101.4	Loboe on Lee Steam – Greenbriar Switching Station 100 kV T.L.	1	1
DEC	Clark Hill 115/100 kV Transformer	125	91.4	101.4	Loss of Santee Cooper 115 kV TL	2	2
DEC	Laurens Tie – Bush River Tie 100 kV TL	65	89.5	107.1	Loss of parallel Laurens Tie – Bush River Tie 100 kV TL	2	3
DEC	Wateree Switching – Great Falls Switching	116	89	130.4	Loss of Newport – VC Sumner 230 kV TL	3	4
DEC	Catawba Nuclear – Allen Steam 230 kV TL	1055	92.6	104.6	Loss of Parallel Catawba Nuclear – Allen Steam 230 kV TL	4	NA*

Scenario Explanations:

1. Asheboro unit 7 offline (DEPW)

2. Lee Combustion Turbine Offline

3. Catawba Nuclear Unit 1 Offline

4. McGuire Nuclear Unit 1 Offline

* Project not in current version of models, but is in expansion plan

TRANSMISSION PLANNING

Southeastern

Regional

<u>Table II.3.2.</u> Pass 1 – Potential Future Transmission System Impacts – DEC

The following table depicts thermal loadings of **DEC** transmission facilities that could become potential constraints in future years or with different queuing assumptions but are not overloaded in the study year with all proposed enhancements to the transmission system.

			Thermal Lo	oadings (%)			
Area	Limiting Element	Rating (MVA)	Without Request	With Request	Contingency	Scenario	Project
DEC	Lee Combustion – Belton Tie 100 kV TL	132	77.7	90.5	Loss of parallel Lee Combustion – Belton Tie 100 kV TL	2	A1*
DEC	Clark Hill – Thurmond Hydro 115 kV TL	120	80.8	94.1	Base Case	2	A2*
DEC	Central Tie – Shady Grove Tie 230 kV TL	464	87.8	94.1	Loss of parallel Central Tie – Shady Grove Tie 230 kV TL	2	A3*
DEC	Lee Combustion – Toxaway Tie 100 kV TL	105	88.3	94.1	Loss of Parallel Lee Combustion – Toxaway Tie 100 kV TL	2	A4*
DEC	Bush River Tie – Saluda Hydro (DESC) 115 kV TL	79	<70	90.3	Loss of Bush River Tie – VC Sumner Nuclear 230 kV TL	2	A5*
DEC	Riverbend Switching – Dixon School Rd Switching 230 kV TL	752	80.4	90.5	Loss of Parallel Riverbend Switching – Dixon School Rd Switching 230 kV TL	4	A6*

Scenario Explanations:

1. Asheboro unit 7 offline (DEPW)

2. Lee Combustion Turbine Offline

3. Catawba Nuclear Unit 1 Offline

4. McGuire Nuclear Unit 1 Offline

*Solutions are presented in Appendix I

Table II.3.3. Potential Solutions for Identified Problems – DEC

The following table lists any potential solutions that were identified to address the significant thermal constraints in order to meet the request and assumptions used in the study. It must be noted that changes to the load forecast, and/or changes in the expansion plan could occur and would impact the results of this study. In addition, the currently projected improvements to the transmission system were modeled in the cases. Changes to system conditions and/or the transmission expansion plans could also impact the results of this study.

Item	Potential Solution	Estimated Need Date	Planning Level Cost Estimate			
1	Lee Steam – Shady Grove Tie 100 kV TL Rebuild both Lee Steam – Shady Grove double circuit transmission lines with 1158 ACSS/TW rated at 200°C (24.5 total miles)	2032	\$90,000,000			
2	Clark Hill 115/100 kV Transformer Upgrade the lowside terminal of the 115/100 kV Transformer to improve rating of transformer	2032	\$3,000,000			
3	Laurens Tie – Bush River Tie 100 kV TL Rebuild the Laurens Tie – Bush River Tie 100 kV TL with 1158 ACSS/TW rated at 200°C (29.25 miles)	2032	\$109,000,000			
4	Wateree Switching – Great Falls Switching 100 kV TL Rebuild the Wateree Switching – Great Falls Switching 100 kV TL with 954 ACSR rated at 120 °C (19.8 miles)		\$79,000,000			
	DEC TOTAL (\$2022)					

Duke Progress East Balancing Authority Area (DEPE) Results

Study Structure and Assumptions

Transfer Sensitivity	Amount	Source	Sink	Year				
DESC (SCEG) to DEC	1000 MW	1000 MW DESC (SCEG)		2032				
Load Flow Cases								
2022 Series Version 1 SERTP Models: Summer Peak								

Transmission System Impacts

The following tables below identify any constraints attributable to the requested transfer for the contingency and scenario that resulted in the most significant loadings for the conditions studied. Other unit out scenarios or contingencies may also result in constraints to these or other facilities.

Table II.4.1. Pass 0 – Transmission System Impacts with No Enhancements – DEPE

The following table identifies significant *DEPE* thermal constraints without any enhancements to the transmission system.

	Thermal Loadings (%)						
Area	Limiting Element	Rating (MVA)	Without Request	With Request	Contingency	Scenario	Project
DEPE	None Identified	-	-	-	-	-	-

Scenario Explanations:

Southeastern

Regional

Table II.4.2. Pass 1 – Potential Future Transmission System Impacts – DEPE

The following table depicts thermal loadings of **DEPE** transmission facilities that could become potential constraints in future years or with different queuing assumptions but are not overloaded in the study year with all proposed enhancements to the transmission system.

Thermal Loadings (%)							
Area	Limiting Element	Rating (MVA)	Without Request	Contingency		Scenario	Project
DEPE	Shaw AFB Tap - Eastover	123	79.76	104.65	SMTCONT-SUMMRTN230_&_SUMT-WATEREE230		NA ¹
DEPE	304532 3VISTA 115 304551 3CASTLH115ET 115 1	179	100.18	101.59	304550 6CASTLEH230T 230 304568 6PORTER TAP 230 1		NA ²
DEPE	304532 3VISTA 115 305063 3E9-HUGHBATT 115 1	179	96.08	97.49	304550 6CASTLEH230T 230 304568 6PORTER TAP 230 1		NA ³

Scenario Explanations:

1. Tie line limited by Dominion SC equipment. This is a known issue that is monitored by DEP and Dominion SC

2. DEP project to reconductor Castle Hayne – Folkstone 115 kV Line by 12/2026

3. DEP project to reconductor Castle Hayne – Folkstone 115 kV Line by 12/2026

TRANSMISSION PLANNING

Southeastern

Regional

Table II.4.3. Potential Solutions for Identified Problems – *DEPE*

The following table lists any potential solutions that were identified to address the significant thermal constraints in order to meet the request and assumptions used in the study. It must be noted that changes to the load forecast, and/or changes in the expansion plan could occur and would impact the results of this study. In addition, the currently projected improvements to the transmission system were modeled in the cases. Changes to system conditions and/or the transmission expansion plans could also impact the results of this study.

ltem	Potential Solution	Estimated Need Date	Planning Level Cost Estimate				
	None Required						
	DEPE TOTAL (\$2022)						

2022 Economic Planning Studies

Duke Progress West (DEPW) Results

Study Structure and Assumptions

Transfer Sensitivity	Amount	Source	Sink	Year				
DESC (SCEG) to DEC	1000 MW	DESC (SCEG)	DEC	2032				
Load Flow Cases								
2022 Series Version 1 SERTP Models: Summer Peak								

Transmission System Impacts

The following tables below identify any constraints attributable to the requested transfer for the contingency and scenario that resulted in the most significant loadings for the conditions studied. Other unit out scenarios or contingencies may also result in constraints to these or other facilities.

Table II.5.1. Pass 0 – Transmission System Impacts with No Enhancements – DEPW

The following table identifies significant **DEPW** thermal constraints without any enhancements to the transmission system.

			Thermal L	oadings (%)			
Area	Limiting Element	Rating (MVA)	Without Request	With Request	Contingency	Scenario	Project
DEPW	None Identified	-	-	-	-	-	-

Scenario Explanations:

Table II.5.2. Pass 1 – Potential Future Transmission System Impacts – DEPW

The following table depicts thermal loadings of **DEPW** transmission facilities that could become potential constraints in future years or with different queuing assumptions but are not overloaded in the study year with all proposed enhancements to the transmission system.

AreaLimiting ElementRating (MVA)Without RequestWith RequestContingencyScenarioProjectDEPWNone Identified				Thermal L	oadings (%)			
DEPW None Identified	Area	Limiting Element	U U			Contingency	Scenario	Project
	DEPW	None Identified						

Scenario Explanations:

Table II.5.3. Potential Solutions for Identified Problems – DEPW

The following table lists any potential solutions that were identified to address the significant thermal constraints in order to meet the request and assumptions used in the study. It must be noted that changes to the load forecast, and/or changes in the expansion plan could occur and would impact the results of this study. In addition, the currently projected improvements to the transmission system were modeled in the cases. Changes to system conditions and/or the transmission expansion plans could also impact the results of this study.

Item	Potential Solution	Estimated Need Date	Planning Level Cost Estimate				
	None Required						
	DEPW TOTAL (\$2022)						

2022 Economic Planning Studies

Gulf Power (GP) Results

Study Structure and Assumptions

Transfer Sensitivity	Amount	Source	Sink	Year				
DESC (SCEG) to DEC	1000 MW	DESC (SCEG)	DEC	2032				
Load Flow Cases								
2022 Series Version 1 SERTP Models: Summer Peak								

Transmission System Impacts

The following tables below identify any constraints attributable to the requested transfer for the contingency and scenario that resulted in the most significant loadings for the conditions studied. Other unit out scenarios or contingencies may also result in constraints to these or other facilities.

Table II.6.1. Pass 0 – Transmission System Impacts with No Enhancements – GP

The following table identifies significant *GP* thermal constraints without any enhancements to the transmission system.

			Thermal L	oadings (%)			
Area	Limiting Element	Rating (MVA)	Without Request	With Request	Contingency	Scenario	Project
GP	None Identified				-		

Scenario Explanations:

Table II.6.2. Pass 1 – Potential Future Transmission System Impacts – GP

The following table depicts thermal loadings of **GP** transmission facilities that could become potential constraints in future years or with different queuing assumptions but are not overloaded in the study year with all proposed enhancements to the transmission system.

AreaLimiting ElementRating (MVA)Without RequestWith RequestContingencyScenarioProjectGPNone Identified				Thermal L	oadings (%)			
GP None Identified	Area	Limiting Element	-			Contingency	Scenario	Project
	GP	None Identified						

Scenario Explanations:

TRANSMISSION PLANNING

Southeastern

Regional

Table II.6.3. Potential Solutions for Identified Problems – GP

The following table lists any potential solutions that were identified to address the significant thermal constraints in order to meet the request and assumptions used in the study. It must be noted that changes to the load forecast, and/or changes in the expansion plan could occur and would impact the results of this study. In addition, the currently projected improvements to the transmission system were modeled in the cases. Changes to system conditions and/or the transmission expansion plans could also impact the results of this study.

Item	Potential Solution	Estimated Need Date	Planning Level Cost Estimate				
	None Required						
	GP TOTAL (\$2022)						

Louisville Gas & Electric and Kentucky Utilities Balancing Authority Area (LG&E/KU) Results

Study Structure and Assumptions

Southeastern

TRANSMISSION PLANNING

Regional

Transfer Sensitivity	Amount	Source	Sink	Year				
DESC (SCEG) to DEC	1000 MW	DESC (SCEG)	DEC	2032				
Load Flow Cases								
2022 Series Version 1 SERTP Models: Summer Peak								

Transmission System Impacts

The following tables below identify any constraints attributable to the requested transfer for the contingency and scenario that resulted in the most significant loadings for the conditions studied. Other unit out scenarios or contingencies may also result in constraints to these or other facilities.

Table II.7.1. Pass 0 – Transmission System Impacts with No Enhancements – LG&E/KU

The following table identifies significant *LG&E/KU* thermal constraints without any enhancements to the transmission system.

				Thermal Lo	oadings (%)			
	Area	Limiting Element	Rating (MVA)	Without Request	With Request	Contingency	Scenario	Project
LG	6&E/KU	None Identified				-		

Scenario Explanations:

Table II.7.2. Pass 1 – Potential Future Transmission System Impacts – LG&E/KU

The following table depicts thermal loadings of *LG&E/KU* transmission facilities that could become potential constraints in future years or with different queuing assumptions but are not overloaded in the study year with all proposed enhancements to the transmission system.

AreaLimiting ElementRating (MVA)Without RequestWith RequestContingencyScenarioProjectLG&E/KUNone Identified				Thermal Lo	oadings (%)			
LG&E/KU None Identified	Area	Limiting Element	U U			Contingency	Scenario	Project
	LG&E/KU	None Identified				-		

Scenario Explanations:

Table II.7.3. Potential Solutions for Identified Problems – LGE/KU

Southeastern

TRANSMISSION PLANNING

Regional

The following table lists any potential solutions that were identified to address the significant thermal constraints in order to meet the request and assumptions used in the study. It must be noted that changes to the load forecast, and/or changes in the expansion plan could occur and would impact the results of this study. In addition, the currently projected improvements to the transmission system were modeled in the cases. Changes to system conditions and/or the transmission expansion plans could also impact the results of this study.

ltem	Potential Solution	Estimated Need Date	Planning Level Cost Estimate				
	None Required						
	LGE/KU TOTAL (\$2022)						

PowerSouth (PS) Results

Study Structure and Assumptions

Transfer Sensitivity	Amount	Source	Sink	Year							
DESC (SCEG) to DEC	DESC (SCEG) to DEC 1000 MW DESC (SCEG) DEC 2032										
Load Flow Cases											
2022 Series Version 1 SERTP Models: Summer Peak											

Transmission System Impacts

The following tables below identify any constraints attributable to the requested transfer for the contingency and scenario that resulted in the most significant loadings for the conditions studied. Other unit out scenarios or contingencies may also result in constraints to these or other facilities.

Table II.8.1. Pass 0 – Transmission System Impacts with No Enhancements – PS

The following table identifies significant **PS** thermal constraints without any enhancements to the transmission system.

			Thermal L	oadings (%)			
Area	Limiting Element	Rating (MVA)	Without Request	With Request	Contingency	Scenario	Project
PS	None Identified	-	-	-	-	-	-

Scenario Explanations:

Table II.8.2. Pass 1 – Potential Future Transmission System Impacts – PS

The following table depicts thermal loadings of **PS** transmission facilities that could become potential constraints in future years or with different queuing assumptions but are not overloaded in the study year with all proposed enhancements to the transmission system.

AreaLimiting ElementRating (MVA)Without RequestWith RequestWith RequestContingencyScenarioProjectPSNone Identified			Thermal L	oadings (%)			
PS None Identified	Area	Limiting Element	 		Contingency	Scenario	Project
	PS	None Identified	 		-		

Scenario Explanations:

TRANSMISSION PLANNING

Table II.8.3. Potential Solutions for Identified Problems – PS

The following table lists any potential solutions that were identified to address the significant thermal constraints in order to meet the request and assumptions used in the study. It must be noted that changes to the load forecast, and/or changes in the expansion plan could occur and would impact the results of this study. In addition, the currently projected improvements to the transmission system were modeled in the cases. Changes to system conditions and/or the transmission expansion plans could also impact the results of this study.

Item	Potential Solution	Estimated Need Date	Planning Level Cost Estimate			
	None Required					
	PS TOTAL (\$2022)					

2022 Economic Planning Studies

Southern Balancing Authority Area (SBAA) Results

Study Structure and Assumptions

Transfer Sensitivity	Amount	Source	Sink	Year				
DESC (SCEG) to DEC	1000 MW	DESC (SCEG)	DEC	2032				
Load Flow Cases								
2022 Series Version 1 SERTP Models: Summer Peak								

Transmission System Impacts

The following tables below identify any constraints attributable to the requested transfer for the contingency and scenario that resulted in the most significant loadings for the conditions studied. Other unit out scenarios or contingencies may also result in constraints to these or other facilities.

Table II.9.1. Pass 0 – Transmission System Impacts with No Enhancements – SBAA

The following table identifies significant **SBAA** thermal constraints without any enhancements to the transmission system.

			Thermal Lo	oadings (%)			
Area	Limiting Element	Rating (MVA)	Without Request	With Request	Contingency	Scenario	Project
SBAA	None Identified						

Scenario Explanations:

Table II.9.2. Pass 1 – Potential Future Transmission System Impacts – SBAA

The following table depicts thermal loadings of **SBAA** transmission facilities that could become potential constraints in future years or with different queuing assumptions but are not overloaded in the study year with all proposed enhancements to the transmission system.

			Thermal Lo	oadings (%)			
Area	Limiting Element	Rating (MVA)	Without Request	With Request	Contingency	Scenario	Project
SBAA							

Scenario Explanations:

Table II.9.3. Potential Solutions for Identified Problems – SBAA

Regional

TRANSMISSION PLANNING

The following table lists any potential solutions that were identified to address the significant thermal constraints in order to meet the request and assumptions used in the study. It must be noted that changes to the load forecast, and/or changes in the expansion plan could occur and would impact the results of this study. In addition, the currently projected improvements to the transmission system were modeled in the cases. Changes to system conditions and/or the transmission expansion plans could also impact the results of this study.

ltem	Potential Solution	Estimated Need Date	Planning Level Cost Estimate				
	None Required						
	SBAA TOTAL (\$2022)						

Tennessee Valley Authority Balancing Authority Area (TVA) Results

Study Structure and Assumptions

Transfer Sensitivity	Amount	Source	Sink	Year				
DESC (SCEG) to DEC	1000 MW	DESC (SCEG)	DEC	2032				
Load Flow Cases								
2022 Series Version 1 SERTP Models: Summer Peak								

Transmission System Impacts

The following tables below identify any constraints attributable to the requested transfer for the contingency and scenario that resulted in the most significant loadings for the conditions studied. Other unit out scenarios or contingencies may also result in constraints to these or other facilities.

Table II.10.1. Pass 0 – Transmission System Impacts with No Enhancements – TVA

The following table identifies significant *TVA* thermal constraints without any enhancements to the transmission system.

			Thermal L	oadings (%)			
Area	Limiting Element	Rating (MVA)	Without Request	With Request	Contingency	Scenario	Project
TVA	None Identified	-	-	-	-	-	_

Scenario Explanations:

Table II.10.2. Pass 1 – Potential Future Transmission System Impacts – TVA

The following table depicts thermal loadings of **TVA** transmission facilities that could become potential constraints in future years or with different queuing assumptions but are not overloaded in the study year with all proposed enhancements to the transmission system.

AreaLimiting ElementRating (MVA)With RequestWith RequestContingencyScenarioProjectTVANone Identified				Thermal L	oadings (%)			
TVA None Identified	Area	Limiting Element	U U			Contingency	Scenario	Project
	TVA	None Identified				-		

Scenario Explanations:

Table II.10.3. Potential Solutions for Identified Problems – TVA

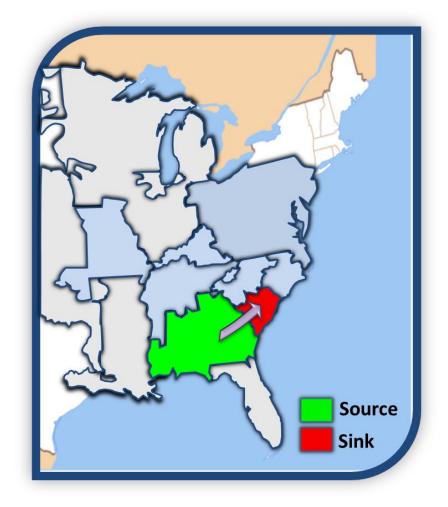
Southeastern

TRANSMISSION PLANNING

Regional

The following table lists any potential solutions that were identified to address the significant thermal constraints in order to meet the request and assumptions used in the study. It must be noted that changes to the load forecast, and/or changes in the expansion plan could occur and would impact the results of this study. In addition, the currently projected improvements to the transmission system were modeled in the cases. Changes to system conditions and/or the transmission expansion plans could also impact the results of this study.

Item	Potential Solution	Estimated Need Date	Planning Level Cost Estimate		
	None Required				
	\$0 ⁽¹⁾				


3. Study Request 3 Results

Southeastern

TRANSMISSION PLANNING

Regional

Southern Company to Santee Cooper -Winter 2027 600 MW

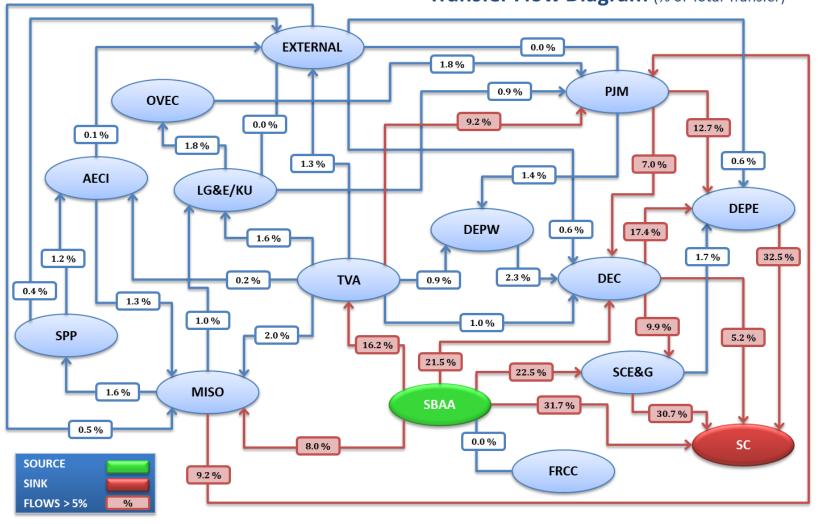


Table III.1.1. Total Cost Identified by the SERTP Sponsors

Balancing Authority Area	Planning Level Cost Estimate
Associated Electric Cooperative (AECI)	\$0
Duke Carolinas (DEC)	\$0
Duke Progress East (DEPE)	\$0
Duke Progress West (DEPW)	\$0
Gulf Power (GP)	\$0
Louisville Gas & Electric and Kentucky Utilities (LG&E/KU)	\$0
PowerSouth (PS)	\$0
Southern (SBAA)	\$0
Tennessee Valley Authority (TVA)	\$0
TOTAL (\$2022)	\$0

Diagram III.1.1. Transfer Flow Diagram (% of Total Transfer)

Transfer Flow Diagram (% of Total Transfer)

1

Associated Electric Cooperative Balancing Authority Area (AECI) Results

Study Structure and Assumptions

Regional

Transfer Sensitivity	Amount	Source	Sink	Year				
SOCO to SC	600 MW	SOCO	SC	2027				
Load Flow Cases								
2022 Series Version 1 SERTP Models: Winter Peak								

Transmission System Impacts

The following tables below identify any constraints attributable to the requested transfer for the contingency and scenario that resulted in the most significant loadings for the conditions studied. Other unit out scenarios or contingencies may also result in constraints to these or other facilities.

Table III.2.1. Pass 0 – Transmission System Impacts with No Enhancements – AECI

The following table identifies significant **AECI** thermal constraints without any enhancements to the transmission system.

			Thermal L	oadings (%)			
Area	Limiting Element	Rating (MVA)	Without Request	With Request	Contingency	Scenario	Project
AECI	None Identified	-		-	-		

Scenario Explanations:

Table III.2.2. Pass 1 – Potential Future Transmission System Impacts – AECI

The following table depicts thermal loadings of *AECI* transmission facilities that could become potential constraints in future years or with different queuing assumptions but are not overloaded in the study year with all proposed enhancements to the transmission system.

			Thermal Lo	oadings (%)			
Area	Limiting Element	Rating (MVA)	Without Request	With Request	Contingency	Scenario	Project
AECI	None Identified				-		

Scenario Explanations:

Table III.2.3. Potential Solutions for Identified Problems – AECI

Southeastern

TRANSMISSION PLANNING

Regional

The following table lists any potential solutions that were identified to address the significant thermal constraints in order to meet the request and assumptions used in the study. It must be noted that changes to the load forecast, and/or changes in the expansion plan could occur and would impact the results of this study. In addition, the currently projected improvements to the transmission system were modeled in the cases. Changes to system conditions and/or the transmission expansion plans could also impact the results of this study.

ltem	Potential Solution	Estimated Need Date	Planning Level Cost Estimate				
	None Required						
	AECI TOTAL (\$2022)						

Duke Carolinas Balancing Authority Area (DEC) Results

Study Structure and Assumptions

Transfer Sensitivity	Amount	Source	Sink	Year			
SOCO to SC	600 MW	SOCO	SC	2027			
	Load Flow	Cases					
2022 Series Version 1 SERTP Models: Winter Peak							

Transmission System Impacts

The following tables below identify any constraints attributable to the requested transfer for the contingency and scenario that resulted in the most significant loadings for the conditions studied. Other unit out scenarios or contingencies may also result in constraints to these or other facilities.

Table III.3.1. Pass 0 – Transmission System Impacts with No Enhancements – DEC

The following table identifies significant **DEC** thermal constraints without any enhancements to the transmission system.

			Thermal Lo	oadings (%)			
Area	Limiting Element	Rating (MVA)	Without Request	With Request	Contingency	Scenario	Project
DEC	None Identified						

Scenario Explanations:

Table III.3.2. Pass 1 – Potential Future Transmission System Impacts – DEC

The following table depicts thermal loadings of **DEC** transmission facilities that could become potential constraints in future years or with different queuing assumptions but are not overloaded in the study year with all proposed enhancements to the transmission system.

			Thermal L	oadings (%)			
Area	Limiting Element	Rating (MVA)	Without Request	With Request	Contingency	Scenario	Project
DEC	None Identified						

Scenario Explanations:

Table III.3.3. Potential Solutions for Identified Problems – DEC

Southeastern

TRANSMISSION PLANNING

Regional

The following table lists any potential solutions that were identified to address the significant thermal constraints in order to meet the request and assumptions used in the study. It must be noted that changes to the load forecast, and/or changes in the expansion plan could occur and would impact the results of this study. In addition, the currently projected improvements to the transmission system were modeled in the cases. Changes to system conditions and/or the transmission expansion plans could also impact the results of this study.

ltem	Potential Solution	Estimated Need Date	Planning Level Cost Estimate				
	None Required						
	DEC TOTAL (\$2022)						

Duke Progress East Balancing Authority Area (DEPE) Results

Study Structure and Assumptions

Transfer Sensitivity	Amount	Source	Sink	Year						
SOCO to SC	600 MW	SOCO	SC	2027						
	Load Flow Cases									
2022 Series Version 1 SERTP Models: Winter Peak										

Transmission System Impacts

The following tables below identify any constraints attributable to the requested transfer for the contingency and scenario that resulted in the most significant loadings for the conditions studied. Other unit out scenarios or contingencies may also result in constraints to these or other facilities.

Table III.4.1. Pass 0 – Transmission System Impacts with No Enhancements – DEPE

The following table identifies significant *DEPE* thermal constraints without any enhancements to the transmission system.

			Thermal L	oadings (%)			
Area	Limiting Element	Rating (MVA)	Without Request	With Request	Contingency	Scenario	Project
DEPE	None Identified	-	-	-	-	-	-

Scenario Explanations:

Table III.4.2. Pass 1 – Potential Future Transmission System Impacts – DEPE

The following table depicts thermal loadings of **DEPE** transmission facilities that could become potential constraints in future years or with different queuing assumptions but are not overloaded in the study year with all proposed enhancements to the transmission system.

Thermal Loadings (%)

Area	Limiting Element	Rating (MVA)	Without Request	With Request	Contingency	Scenario	Project
DEPE	304566 3IND 304566 115 304583 3DELCO115E T 115 1	159	98.58	98.53	304035 3SUTTON115 T 115 304560 3IND 304560 115 1		NA ¹

Scenario Explanations:

1. Uprates to the Delco terminal of the Sutton Plant – Delco 115 kV Line will resolve issue by 2022

Table III.4.3. Potential Solutions for Identified Problems – DEPE

Southeastern

TRANSMISSION PLANNING

Regional

The following table lists any potential solutions that were identified to address the significant thermal constraints in order to meet the request and assumptions used in the study. It must be noted that changes to the load forecast, and/or changes in the expansion plan could occur and would impact the results of this study. In addition, the currently projected improvements to the transmission system were modeled in the cases. Changes to system conditions and/or the transmission expansion plans could also impact the results of this study.

ltem	Potential Solution	Estimated Need Date	Planning Level Cost Estimate				
	None Required						
	DEPE TOTAL (\$2022)						

2022 Economic Planning Studies

Duke Progress West (DEPW) Results

Study Structure and Assumptions

Transfer Sensitivity	Amount	Source	Sink	Year				
SOCO to SC	600 MW	SOCO	SC	2027				
	Load Flow	Cases						
2022 Seri	2022 Series Version 1 SERTP Models: Winter Peak							

Transmission System Impacts

The following tables below identify any constraints attributable to the requested transfer for the contingency and scenario that resulted in the most significant loadings for the conditions studied. Other unit out scenarios or contingencies may also result in constraints to these or other facilities.

Table III.5.1. Pass 0 – Transmission System Impacts with No Enhancements – *DEPW*

The following table identifies significant **DEPW** thermal constraints without any enhancements to the transmission system.

			Thermal L	oadings (%)			
Area	Limiting Element	Rating (MVA)	Without Request	With Request	Contingency	Scenario	Project
DEPW	None Identified	-	-	-	-	-	-

Scenario Explanations:

Table III.5.2. Pass 1 – Potential Future Transmission System Impacts – DEPW

The following table depicts thermal loadings of **DEPW** transmission facilities that could become potential constraints in future years or with different queuing assumptions but are not overloaded in the study year with all proposed enhancements to the transmission system.

			Thermal L	oadings (%)			
Area	Limiting Element	Rating (MVA)	Without Request	With Request	Contingency	Scenario	Project
DEPW	None Identified						

Scenario Explanations:

Table III.5.3. Potential Solutions for Identified Problems – DEPW

The following table lists any potential solutions that were identified to address the significant thermal constraints in order to meet the request and assumptions used in the study. It must be noted that changes to the load forecast, and/or changes in the expansion plan could occur and would impact the results of this study. In addition, the currently projected improvements to the transmission system were modeled in the cases. Changes to system conditions and/or the transmission expansion plans could also impact the results of this study.

Item	Potential Solution	Estimated Need Date	Planning Level Cost Estimate				
	None Required						
	DEPW TOTAL (\$2022)						

Gulf Power (GP) Results

Study Structure and Assumptions

Transfer Sensitivity	Transfer Sensitivity Amount Source Sink Year									
SOCO to SC 600 MW SOCO SC 2027										
Load Flow Cases										
2022 Series Version 1 SERTP Models: Winter Peak										

Transmission System Impacts

The following tables below identify any constraints attributable to the requested transfer for the contingency and scenario that resulted in the most significant loadings for the conditions studied. Other unit out scenarios or contingencies may also result in constraints to these or other facilities.

Table III.6.1. Pass 0 – Transmission System Impacts with No Enhancements – GP

The following table identifies significant *GP* thermal constraints without any enhancements to the transmission system.

			Thermal L	oadings (%)			
Area	Limiting Element	Rating (MVA)	Without Request	With Request	Contingency	Scenario	Project
GP	None Identified						

Scenario Explanations:

Table III.6.2. Pass 1 – Potential Future Transmission System Impacts – GP

The following table depicts thermal loadings of *GP* transmission facilities that could become potential constraints in future years or with different queuing assumptions but are not overloaded in the study year with all proposed enhancements to the transmission system.

Area Limiting Element Rating (MVA) Without Request With Request With Request Contingency Scenario Project GP None Identified				Thermal L	oadings (%)			
GP None Identified	Area	Limiting Element	J			Contingency	Scenario	Project
	GP	None Identified						

Scenario Explanations:

TRANSMISSION PLANNING

Southeastern

Regional

Table III.6.3. Potential Solutions for Identified Problems – GP

The following table lists any potential solutions that were identified to address the significant thermal constraints in order to meet the request and assumptions used in the study. It must be noted that changes to the load forecast, and/or changes in the expansion plan could occur and would impact the results of this study. In addition, the currently projected improvements to the transmission system were modeled in the cases. Changes to system conditions and/or the transmission expansion plans could also impact the results of this study.

Item	Potential Solution	Estimated Need Date	Planning Level Cost Estimate				
	None Required						
	GP TOTAL (\$2022)						

Louisville Gas & Electric and Kentucky Utilities Balancing Authority Area (LG&E/KU) Results

Study Structure and Assumptions

Southeastern

TRANSMISSION PLANNING

Regional

Transfer Sensitivity	Amount	Source	Sink	Year						
SOCO to SC	SOCO to SC 600 MW SOCO SC 2027									
Load Flow Cases										
2022 Series Version 1 SERTP Models: Winter Peak										

Transmission System Impacts

The following tables below identify any constraints attributable to the requested transfer for the contingency and scenario that resulted in the most significant loadings for the conditions studied. Other unit out scenarios or contingencies may also result in constraints to these or other facilities.

Table III.7.1. Pass 0 – Transmission System Impacts with No Enhancements – LG&E/KU

The following table identifies significant *LG&E/KU* thermal constraints without any enhancements to the transmission system.

				Thermal Lo	oadings (%)			
	Area	Limiting Element	Rating (MVA)	Without Request	With Request	Contingency	Scenario	Project
LG	6&E/KU	None Identified				-		

Scenario Explanations:

Table III.7.2. Pass 1 – Potential Future Transmission System Impacts – LG&E/KU

The following table depicts thermal loadings of *LG&E/KU* transmission facilities that could become potential constraints in future years or with different queuing assumptions but are not overloaded in the study year with all proposed enhancements to the transmission system.

AreaLimiting ElementRating (MVA)Without RequestWith RequestContingencyScenarioProjectLG&E/KUNone Identified				Thermal Lo	oadings (%)			
LG&E/KU None Identified	Area	Limiting Element	0			Contingency	Scenario	Project
	LG&E/KU	None Identified				-		

Scenario Explanations:

Table III.7.3. Potential Solutions for Identified Problems – LGE/KU

Southeastern

TRANSMISSION PLANNING

Regional

The following table lists any potential solutions that were identified to address the significant thermal constraints in order to meet the request and assumptions used in the study. It must be noted that changes to the load forecast, and/or changes in the expansion plan could occur and would impact the results of this study. In addition, the currently projected improvements to the transmission system were modeled in the cases. Changes to system conditions and/or the transmission expansion plans could also impact the results of this study.

ltem	Potential Solution	Estimated Need Date	Planning Level Cost Estimate				
	None Required						
	LGE/KU TOTAL (\$2022)						

PowerSouth (PS) Results

Study Structure and Assumptions

Transfer Sensitivity	Transfer Sensitivity Amount Source Sink Year									
SOCO to SC 600 MW SOCO SC 2027										
Load Flow Cases										
2022 Series Version 1 SERTP Models: Winter Peak										

Transmission System Impacts

The following tables below identify any constraints attributable to the requested transfer for the contingency and scenario that resulted in the most significant loadings for the conditions studied. Other unit out scenarios or contingencies may also result in constraints to these or other facilities.

Table III.8.1. Pass 0 – Transmission System Impacts with No Enhancements – PS

The following table identifies significant **PS** thermal constraints without any enhancements to the transmission system.

			Thermal L	oadings (%)			
Area	Limiting Element	Rating (MVA)	Without Request	With Request	Contingency	Scenario	Project
PS	None Identified	-	-	-	-	-	-

Scenario Explanations:

Table III.8.2. Pass 1 – Potential Future Transmission System Impacts – PS

The following table depicts thermal loadings of **PS** transmission facilities that could become potential constraints in future years or with different queuing assumptions but are not overloaded in the study year with all proposed enhancements to the transmission system.

			Thermal L	oadings (%)			
Area	Limiting Element	Rating (MVA)	Without Request	With Request	Contingency	Scenario	Project
PS	None Identified				-		

Scenario Explanations:

Table III.8.3. Potential Solutions for Identified Problems – PS

Southeastern

TRANSMISSION PLANNING

Regional

The following table lists any potential solutions that were identified to address the significant thermal constraints in order to meet the request and assumptions used in the study. It must be noted that changes to the load forecast, and/or changes in the expansion plan could occur and would impact the results of this study. In addition, the currently projected improvements to the transmission system were modeled in the cases. Changes to system conditions and/or the transmission expansion plans could also impact the results of this study.

ltem	Potential Solution	Estimated Need Date	Planning Level Cost Estimate
	None Required		
	\$0 ⁽¹⁾		

Southern Balancing Authority Area (SBAA) Results

Study Structure and Assumptions

Transfer Sensitivity	Transfer Sensitivity Amount Source Sink Year										
SOCO to SC 600 MW SOCO SC 2027											
Load Flow Cases											
2022 Series Version 1 SERTP Models: Winter Peak											

Transmission System Impacts

The following tables below identify any constraints attributable to the requested transfer for the contingency and scenario that resulted in the most significant loadings for the conditions studied. Other unit out scenarios or contingencies may also result in constraints to these or other facilities.

Table III.9.1. Pass 0 – Transmission System Impacts with No Enhancements – SBAA

The following table identifies significant **SBAA** thermal constraints without any enhancements to the transmission system.

			Thermal Lo	oadings (%)			
Area	Limiting Element	Rating (MVA)	Without Request	With Request	Contingency	Scenario	Project
SBAA	None Identified						

Scenario Explanations:

Table III.9.2. Pass 1 – Potential Future Transmission System Impacts – SBAA

The following table depicts thermal loadings of **SBAA** transmission facilities that could become potential constraints in future years or with different queuing assumptions but are not overloaded in the study year with all proposed enhancements to the transmission system.

			Thermal Lo	oadings (%)			
Area	Limiting Element	Rating (MVA)	Without Request	With Request	Contingency	Scenario	Project
SBAA							

Scenario Explanations:

Table III.9.3. Potential Solutions for Identified Problems – SBAA

Southeastern

TRANSMISSION PLANNING

Regional

The following table lists any potential solutions that were identified to address the significant thermal constraints in order to meet the request and assumptions used in the study. It must be noted that changes to the load forecast, and/or changes in the expansion plan could occur and would impact the results of this study. In addition, the currently projected improvements to the transmission system were modeled in the cases. Changes to system conditions and/or the transmission expansion plans could also impact the results of this study.

Item	Potential Solution	Estimated Need Date	Planning Level Cost Estimate
	None Required		
	\$0 ⁽¹⁾		

Tennessee Valley Authority Balancing Authority Area (TVA) Results

Study Structure and Assumptions

Regional

Transfer Sensitivity	Transfer Sensitivity Amount Source Sink Year										
SOCO to SC 600 MW SOCO SC 2027											
Load Flow Cases											
2022 Series Version 1 SERTP Models: Winter Peak											

Transmission System Impacts

The following tables below identify any constraints attributable to the requested transfer for the contingency and scenario that resulted in the most significant loadings for the conditions studied. Other unit out scenarios or contingencies may also result in constraints to these or other facilities.

Table III.10.1. Pass 0 – Transmission System Impacts with No Enhancements – TVA

The following table identifies significant **TVA** thermal constraints without any enhancements to the transmission system.

			Thermal L	oadings (%)			
Area	Limiting Element	Rating (MVA)	Without Request	With Request	Contingency	Scenario	Project
TVA	None Identified	-	-	-	-	-	-

Scenario Explanations:

Table III.10.2. Pass 1 – Potential Future Transmission System Impacts – TVA

The following table depicts thermal loadings of **TVA** transmission facilities that could become potential constraints in future years or with different queuing assumptions but are not overloaded in the study year with all proposed enhancements to the transmission system.

(MVA) Request Request				Thermal L	oadings (%)			
	Area	Limiting Element	0			Contingency	Scenario	Project
	TVA	None Identified						

Scenario Explanations:

Table III.10.3. Potential Solutions for Identified Problems – TVA

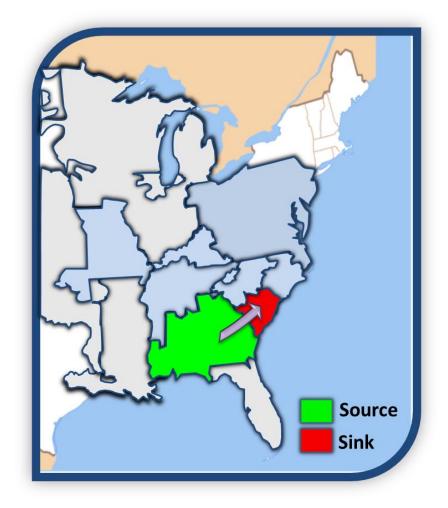
Southeastern

TRANSMISSION PLANNING

Regional

The following table lists any potential solutions that were identified to address the significant thermal constraints in order to meet the request and assumptions used in the study. It must be noted that changes to the load forecast, and/or changes in the expansion plan could occur and would impact the results of this study. In addition, the currently projected improvements to the transmission system were modeled in the cases. Changes to system conditions and/or the transmission expansion plans could also impact the results of this study.

Item	Potential Solution	Estimated Need Date	Planning Level Cost Estimate				
	None Required						
	TVA TOTAL (\$2022)						


4. Study Request 4 Results

Southeastern

TRANSMISSION PLANNING

Regional

Southern Company to Santee Cooper -Summer 2024 500 MW

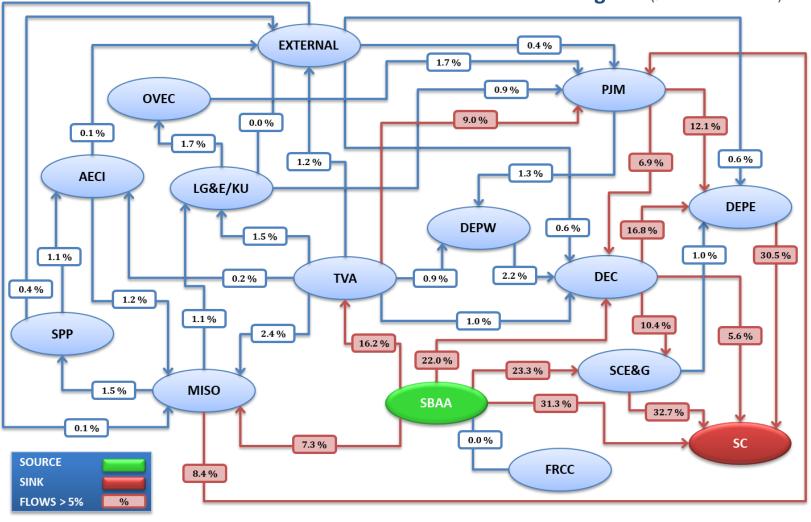


Table IV.1.1. Total Cost Identified by the SERTP Sponsors

Balancing Authority Area	Planning Level Cost Estimate
Associated Electric Cooperative (AECI)	\$0
Duke Carolinas (DEC)	\$0
Duke Progress East (DEPE)	\$0
Duke Progress West (DEPW)	\$0
Gulf Power (GP)	\$0
Louisville Gas & Electric and Kentucky Utilities (LG&E/KU)	\$0
PowerSouth (PS)	\$0
Southern (SBAA)	\$39,218,000
Tennessee Valley Authority (TVA)	\$0
TOTAL (\$2022)	\$39,218,000

Diagram IV.1.1. Transfer Flow Diagram (% of Total Transfer)

Transfer Flow Diagram (% of Total Transfer)

1

Associated Electric Cooperative Balancing Authority Area (AECI) Results

Study Structure and Assumptions

Regional

Transfer Sensitivity Amount Source Sink Year										
SOCO to SC 500 MW SOCO SC 2024										
Load Flow Cases										
2022 Series Version 1 SERTP Models: Summer Peak										

Transmission System Impacts

The following tables below identify any constraints attributable to the requested transfer for the contingency and scenario that resulted in the most significant loadings for the conditions studied. Other unit out scenarios or contingencies may also result in constraints to these or other facilities.

Table IV.2.1. Pass 0 – Transmission System Impacts with No Enhancements – AECI

The following table identifies significant **AECI** thermal constraints without any enhancements to the transmission system.

			Thermal Lo	oadings (%)			
Area	Limiting Element	Rating (MVA)	Without Request	With Request	Contingency	Scenario	Project
AECI	None Identified	-	-	-	-		

Scenario Explanations:

Table IV.2.2. Pass 1 – Potential Future Transmission System Impacts – AECI

The following table depicts thermal loadings of **AECI** transmission facilities that could become potential constraints in future years or with different queuing assumptions but are not overloaded in the study year with all proposed enhancements to the transmission system.

AreaLimiting ElementRating (MVA)Without RequestWith RequestWith RequestContingencyScenarioProjectAECINone Identified				Thermal L	oadings (%)			
AECI None Identified	Area	Limiting Element	-			Contingency	Scenario	Project
	AECI	None Identified						

Scenario Explanations:

Table IV.2.3. Potential Solutions for Identified Problems – AECI

Southeastern

TRANSMISSION PLANNING

Regional

The following table lists any potential solutions that were identified to address the significant thermal constraints in order to meet the request and assumptions used in the study. It must be noted that changes to the load forecast, and/or changes in the expansion plan could occur and would impact the results of this study. In addition, the currently projected improvements to the transmission system were modeled in the cases. Changes to system conditions and/or the transmission expansion plans could also impact the results of this study.

ltem	Potential Solution	Estimated Need Date	Planning Level Cost Estimate			
	None Required					
	AECI TOTAL (\$2022)					

Duke Carolinas Balancing Authority Area (DEC) Results

Study Structure and Assumptions

Transfer Sensitivity	Amount	Source	Sink	Year				
SOCO to SC	500 MW	SOCO	SC	2024				
Load Flow Cases								
2022 Series Version 1 SERTP Models: Summer Peak								

Transmission System Impacts

The following tables below identify any constraints attributable to the requested transfer for the contingency and scenario that resulted in the most significant loadings for the conditions studied. Other unit out scenarios or contingencies may also result in constraints to these or other facilities.

Table IV.3.1. Pass 0 – Transmission System Impacts with No Enhancements – DEC

The following table identifies significant **DEC** thermal constraints without any enhancements to the transmission system.

			Thermal Lo	oadings (%)			
Area	Limiting Element	Rating (MVA)	Without Request	With Request	Contingency	Scenario	Project
DEC	None Identified						

Scenario Explanations:

Table IV.3.2. Pass 1 – Potential Future Transmission System Impacts – DEC

The following table depicts thermal loadings of **DEC** transmission facilities that could become potential constraints in future years or with different queuing assumptions but are not overloaded in the study year with all proposed enhancements to the transmission system.

			Thermal Lo	oadings (%)			
Area	Limiting Element	Rating (MVA)	Without Request	With Request	Contingency	Scenario	Project
DEC	None Identified						

Scenario Explanations:

Table IV.3.3. Potential Solutions for Identified Problems – DEC

Southeastern

TRANSMISSION PLANNING

Regional

The following table lists any potential solutions that were identified to address the significant thermal constraints in order to meet the request and assumptions used in the study. It must be noted that changes to the load forecast, and/or changes in the expansion plan could occur and would impact the results of this study. In addition, the currently projected improvements to the transmission system were modeled in the cases. Changes to system conditions and/or the transmission expansion plans could also impact the results of this study.

ltem	Potential Solution	Estimated Need Date	Planning Level Cost Estimate			
	None Required					
	DEC TOTAL (\$2022)					

Duke Progress East Balancing Authority Area (DEPE) Results

Study Structure and Assumptions

Transfer Sensitivity	Amount	Source	Sink	Year				
SOCO to SC	500 MW	SOCO	SC	2024				
Load Flow Cases								
2022 Series Version 1 SERTP Models: Summer Peak								

Transmission System Impacts

The following tables below identify any constraints attributable to the requested transfer for the contingency and scenario that resulted in the most significant loadings for the conditions studied. Other unit out scenarios or contingencies may also result in constraints to these or other facilities.

Table IV.4.1. Pass 0 – Transmission System Impacts with No Enhancements – DEPE

The following table identifies significant *DEPE* thermal constraints without any enhancements to the transmission system.

			Thermal L	oadings (%)			
Area	Limiting Element	Rating (MVA)	Without Request	With Request	Contingency	Scenario	Project
DEPE	None Identified	-	-	-	-	-	-

Scenario Explanations:

Table IV.4.2. Pass 1 – Potential Future Transmission System Impacts – DEPE

The following table depicts thermal loadings of **DEPE** transmission facilities that could become potential constraints in future years or with different queuing assumptions but are not overloaded in the study year with all proposed enhancements to the transmission system.

AreaLimiting ElementRating (MVA)Without RequestWith RequestWith RequestContingencyScenarioProjectDEPENone Identified			Thermal L	oadings (%)			
DEPE None Identified	Area	Limiting Element			Contingency	Scenario	Project
	DEPE	None Identified	 				

Scenario Explanations:

Table IV.4.3. Potential Solutions for Identified Problems – DEPE

Southeastern

TRANSMISSION PLANNING

Regional

The following table lists any potential solutions that were identified to address the significant thermal constraints in order to meet the request and assumptions used in the study. It must be noted that changes to the load forecast, and/or changes in the expansion plan could occur and would impact the results of this study. In addition, the currently projected improvements to the transmission system were modeled in the cases. Changes to system conditions and/or the transmission expansion plans could also impact the results of this study.

ltem	Potential Solution	Estimated Need Date	Planning Level Cost Estimate				
	None Required						
	DEPE TOTAL (\$2022)						

Duke Progress West (DEPW) Results

Study Structure and Assumptions

Transfer Sensitivity	Amount	Source	Sink	Year						
SOCO to SC 500 MW SOCO SC 2024										
Load Flow Cases										
2022 Series Version 1 SERTP Models: Summer Peak										

Transmission System Impacts

The following tables below identify any constraints attributable to the requested transfer for the contingency and scenario that resulted in the most significant loadings for the conditions studied. Other unit out scenarios or contingencies may also result in constraints to these or other facilities.

Table IV.5.1. Pass 0 – Transmission System Impacts with No Enhancements – *DEPW*

The following table identifies significant **DEPW** thermal constraints without any enhancements to the transmission system.

			Thermal L	oadings (%)			
Area	Limiting Element	Rating (MVA)	Without Request	With Request	Contingency	Scenario	Project
DEPW	None Identified	-	-	-	-	-	-

Scenario Explanations:

Table IV.5.2. Pass 1 – Potential Future Transmission System Impacts – DEPW

The following table depicts thermal loadings of **DEPW** transmission facilities that could become potential constraints in future years or with different queuing assumptions but are not overloaded in the study year with all proposed enhancements to the transmission system.

			Thermal L	oadings (%)			
Area	Limiting Element	Rating (MVA)	Without Request	With Request	Contingency	Scenario	Project
DEPW	None Identified						

Scenario Explanations:

Table IV.5.3. Potential Solutions for Identified Problems – DEPW

The following table lists any potential solutions that were identified to address the significant thermal constraints in order to meet the request and assumptions used in the study. It must be noted that changes to the load forecast, and/or changes in the expansion plan could occur and would impact the results of this study. In addition, the currently projected improvements to the transmission system were modeled in the cases. Changes to system conditions and/or the transmission expansion plans could also impact the results of this study.

Item	Potential Solution	Estimated Need Date	Planning Level Cost Estimate
	None Required		
	DEPW TOTAL (\$2022)		\$0 ⁽¹⁾

Gulf Power (GP) Results

Study Structure and Assumptions

Transfer Sensitivity	Amount	Source	Sink	Year						
SOCO to SC 500 MW SOCO SC 2024										
Load Flow Cases										
2022 Series Version 1 SERTP Models: Summer Peak										

Transmission System Impacts

The following tables below identify any constraints attributable to the requested transfer for the contingency and scenario that resulted in the most significant loadings for the conditions studied. Other unit out scenarios or contingencies may also result in constraints to these or other facilities.

Table IV.6.1. Pass 0 – Transmission System Impacts with No Enhancements – GP

The following table identifies significant *GP* thermal constraints without any enhancements to the transmission system.

				Thermal Lo	oadings (%)			
Ar	rea	Limiting Element	Rating (MVA)	Without Request	With Request	Contingency	Scenario	Project
G	6P	None Identified						

Scenario Explanations:

Table IV.6.2. Pass 1 – Potential Future Transmission System Impacts – GP

The following table depicts thermal loadings of *GP* transmission facilities that could become potential constraints in future years or with different queuing assumptions but are not overloaded in the study year with all proposed enhancements to the transmission system.

AreaLimiting ElementRating (MVA)Without RequestWith RequestWith RequestContingencyScenarioProjectGPNone Identified				Thermal L	oadings (%)			
GP None Identified	Area	Limiting Element	U U			Contingency	Scenario	Project
	GP	None Identified						

Scenario Explanations:

TRANSMISSION PLANNING

Table IV.6.3. Potential Solutions for Identified Problems – GP

The following table lists any potential solutions that were identified to address the significant thermal constraints in order to meet the request and assumptions used in the study. It must be noted that changes to the load forecast, and/or changes in the expansion plan could occur and would impact the results of this study. In addition, the currently projected improvements to the transmission system were modeled in the cases. Changes to system conditions and/or the transmission expansion plans could also impact the results of this study.

Item	Potential Solution	Estimated Need Date	Planning Level Cost Estimate				
	None Required						
	GP TOTAL (\$2022)						

Louisville Gas & Electric and Kentucky Utilities Balancing Authority Area (LG&E/KU) Results

Study Structure and Assumptions

Southeastern

TRANSMISSION PLANNING

Regional

Transfer Sensitivity	Amount	Source	Sink	Year						
SOCO to SC 500 MW SOCO SC 2024										
Load Flow Cases										
2022 Serie	2022 Series Version 1 SERTP Models: Summer Peak									

Transmission System Impacts

The following tables below identify any constraints attributable to the requested transfer for the contingency and scenario that resulted in the most significant loadings for the conditions studied. Other unit out scenarios or contingencies may also result in constraints to these or other facilities.

Table IV.7.1. Pass 0 – Transmission System Impacts with No Enhancements – LG&E/KU

The following table identifies significant *LG&E/KU* thermal constraints without any enhancements to the transmission system.

			Thermal L	oadings (%)			
Area	Limiting Element	Rating (MVA)	Without Request	With Request	Contingency	Scenario	Project
LG&E/KU	None Identified						

Scenario Explanations:

Table IV.7.2. Pass 1 – Potential Future Transmission System Impacts – *LG&E/KU*

The following table depicts thermal loadings of *LG&E/KU* transmission facilities that could become potential constraints in future years or with different queuing assumptions but are not overloaded in the study year with all proposed enhancements to the transmission system.

			Thermal Lo	oadings (%)			
Area	Limiting Element	Rating (MVA)	Without Request	With Request	Contingency	Scenario	Project
LG&E/KU	None Identified						

Scenario Explanations:

Table IV.7.3. Potential Solutions for Identified Problems – LGE/KU

Southeastern

TRANSMISSION PLANNING

Regional

The following table lists any potential solutions that were identified to address the significant thermal constraints in order to meet the request and assumptions used in the study. It must be noted that changes to the load forecast, and/or changes in the expansion plan could occur and would impact the results of this study. In addition, the currently projected improvements to the transmission system were modeled in the cases. Changes to system conditions and/or the transmission expansion plans could also impact the results of this study.

ltem	Potential Solution	Estimated Need Date	Planning Level Cost Estimate				
	None Required						
	LGE/KU TOTAL (\$2022)						

PowerSouth (PS) Results

Study Structure and Assumptions

Transfer Sensitivity	Amount	Source	Sink	Year							
SOCO to SC	SOCO to SC 500 MW SOCO SC 2024										
Load Flow Cases											
2022 Series Version 1 SERTP Models: Summer Peak											

Transmission System Impacts

The following tables below identify any constraints attributable to the requested transfer for the contingency and scenario that resulted in the most significant loadings for the conditions studied. Other unit out scenarios or contingencies may also result in constraints to these or other facilities.

Table IV.8.1. Pass 0 – Transmission System Impacts with No Enhancements – PS

The following table identifies significant **PS** thermal constraints without any enhancements to the transmission system.

				Thermal L	oadings (%)			
Area	a	Limiting Element	Rating (MVA)	Without Request	With Request	Contingency	Scenario	Project
PS	5	None Identified	-	-	-	-	-	-

Scenario Explanations:

Table IV.8.2. Pass 1 – Potential Future Transmission System Impacts – PS

The following table depicts thermal loadings of **PS** transmission facilities that could become potential constraints in future years or with different queuing assumptions but are not overloaded in the study year with all proposed enhancements to the transmission system.

			Thermal L	oadings (%)			
Area	Limiting Element	Rating (MVA)	Without Request	With Request	Contingency	Scenario	Project
PS	None Identified				-		

Scenario Explanations:

Table IV.8.3. Potential Solutions for Identified Problems – PS

Southeastern

TRANSMISSION PLANNING

Regional

The following table lists any potential solutions that were identified to address the significant thermal constraints in order to meet the request and assumptions used in the study. It must be noted that changes to the load forecast, and/or changes in the expansion plan could occur and would impact the results of this study. In addition, the currently projected improvements to the transmission system were modeled in the cases. Changes to system conditions and/or the transmission expansion plans could also impact the results of this study.

Item	Potential Solution	Estimated Need Date	Planning Level Cost Estimate			
	None Required					
	PS TOTAL (\$2022)					

Southern Balancing Authority Area (SBAA) Results

Study Structure and Assumptions

Transfer Sensitivity	Amount	Source	Sink	Year							
SOCO to SC	SOCO to SC 500 MW SOCO SC 2024										
Load Flow Cases											
2022 Series Version 1 SERTP Models: Summer Peak											

Transmission System Impacts

The following tables below identify any constraints attributable to the requested transfer for the contingency and scenario that resulted in the most significant loadings for the conditions studied. Other unit out scenarios or contingencies may also result in constraints to these or other facilities.

Table IV.9.1. Pass 0 – Transmission System Impacts with No Enhancements – SBAA

The following table identifies significant **SBAA** thermal constraints without any enhancements to the transmission system.

			Thermal L	oadings (%)			
Area	Limiting Element	Rating (MVA)	Without Request	With Request	Contingency	Scenario	Project
SBAA	380623 3LAGRANGE 3 115.00 380624 3RAGLAND ST 115.00 1	155	97.8	105.9	380023 8WANSLEY 500.00 383034 8HEARD CO 500.00 1	1	NA*
SBAA	380624 3RAGLAND ST 115.00 380625 3LAGRANGE B1 115.00 1	155	99	106.9	380023 8WANSLEY 500.00 383034 8HEARD CO 500.00 1	1	NA*
SBAA	380160 6HATCH 230.00 382102 6HATCH SS 2 230.00 1	509	<90	108.2	380009 8W MCINTOSH 500.00 382158 8MCCALL RD 500.00 1	3	P1
SBAA	382102 6HATCH SS 2 230.00 382361 6VIDALIA B2 230.00 1	509	<90	107.0	380009 8W MCINTOSH 500.00 382158 8MCCALL RD 500.00 1	3	P1

*Project not in current version of models, but is in the 2022 Expansion Plan

Scenario Explanations:

1. McDonough 4 Unit Out

2. Vogtle 2 Unit Out

Table IV.9.2. Pass 1 – Potential Future Transmission System Impacts – SBAA

The following table depicts thermal loadings of **SBAA** transmission facilities that could become potential constraints in future years or with different queuing assumptions but are not overloaded in the study year with all proposed enhancements to the transmission system.

			Thermal L	oadings (%)			
Area	Limiting Element	Rating (MVA)	Without Request	With Request	Contingency	Scenario	Project
SBAA	382408 3ETOWAH 115.00 382435 3REAVIS MTN 115.00 1	124	90.2	98.1	380335 6DAWSON CROS 230.00 381117 6MCGRAU F B2 230.00 1	1	

Scenario Explanations:

1. McIntosh 10 Unit Out

Table IV.9.3. Potential Solutions for Identified Problems – SBAA

Regional

The following table lists any potential solutions that were identified to address the significant thermal constraints in order to meet the request and assumptions used in the study. It must be noted that changes to the load forecast, and/or changes in the expansion plan could occur and would impact the results of this study. In addition, the currently projected improvements to the transmission system were modeled in the cases. Changes to system conditions and/or the transmission expansion plans could also impact the results of this study.

ltem	Potential Solution	Estimated Need Date	Planning Level Cost Estimate
P2	Rebuild the Hatch – Vidalia 230kV line, approximately 23.1 miles of 100C 1033.5 ACSR	2024	\$39,218,000
	SBAA TOTAL (\$2022)		\$39,218,000 ⁽¹⁾

Tennessee Valley Authority Balancing Authority Area (TVA) Results

Study Structure and Assumptions

Regional

Transfer Sensitivity	Amount	Source	Sink	Year							
SOCO to SC	SOCO to SC 500 MW SOCO SC 2024										
Load Flow Cases											
2022 Series Version 1 SERTP Models: Summer Peak											

Transmission System Impacts

The following tables below identify any constraints attributable to the requested transfer for the contingency and scenario that resulted in the most significant loadings for the conditions studied. Other unit out scenarios or contingencies may also result in constraints to these or other facilities.

Table IV.10.1. Pass 0 – Transmission System Impacts with No Enhancements – TVA

The following table identifies significant **TVA** thermal constraints without any enhancements to the transmission system.

			Thermal L	oadings (%)			
Area	Limiting Element	Rating (MVA)	Without Request	With Request	Contingency	Scenario	Project
TVA	None Identified	-	-	-	-	-	-

Scenario Explanations:

Table IV.10.2. Pass 1 – Potential Future Transmission System Impacts – TVA

The following table depicts thermal loadings of **TVA** transmission facilities that could become potential constraints in future years or with different queuing assumptions but are not overloaded in the study year with all proposed enhancements to the transmission system.

AreaLimiting ElementRating (MVA)With RequestWith RequestContingencyScenarioProjectTVANone Identified				Thermal L	oadings (%)			
TVA None Identified	Area	Limiting Element	U U			Contingency	Scenario	Project
	TVA	None Identified				-		

Scenario Explanations:

Table IV.10.3. Potential Solutions for Identified Problems – TVA

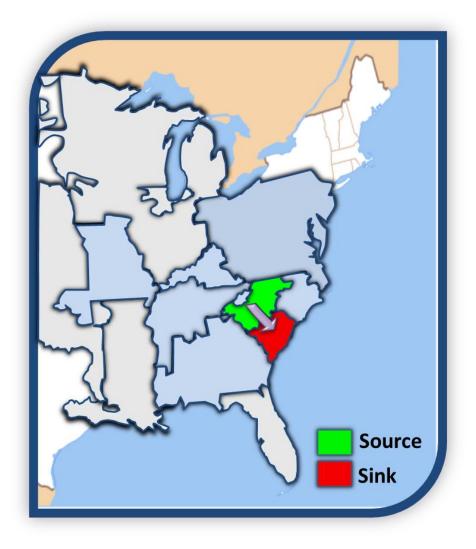
Southeastern

TRANSMISSION PLANNING

Regional

The following table lists any potential solutions that were identified to address the significant thermal constraints in order to meet the request and assumptions used in the study. It must be noted that changes to the load forecast, and/or changes in the expansion plan could occur and would impact the results of this study. In addition, the currently projected improvements to the transmission system were modeled in the cases. Changes to system conditions and/or the transmission expansion plans could also impact the results of this study.

ltem	Potential Solution	Estimated Need Date	Planning Level Cost Estimate					
	None Required							
	TVA TOTAL (\$2022)							


5. Study Request 5 Results

Southeastern

TRANSMISSION PLANNING

Regional

Duke Energy Carolinas to Santee Cooper -Winter 2027 600 MW

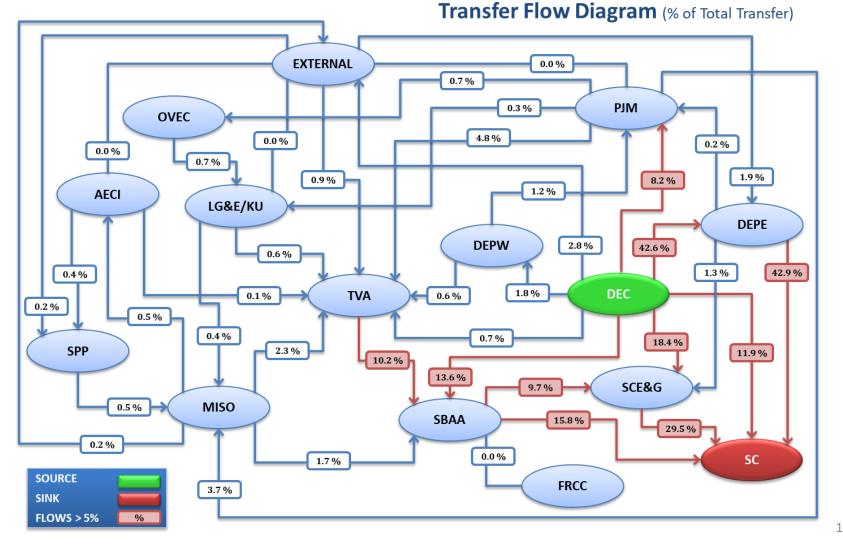


Table V.1.1. Total Cost Identified by the SERTP Sponsors

Balancing Authority Area	Planning Level Cost Estimate
Associated Electric Cooperative (AECI)	\$0
Duke Carolinas (DEC)	\$0
Duke Progress East (DEPE)	\$0
Duke Progress West (DEPW)	\$0
Gulf Power (GP)	\$0
Louisville Gas & Electric and Kentucky Utilities (LG&E/KU)	\$0
PowerSouth (PS)	\$0
Southern (SBAA)	\$0
Tennessee Valley Authority (TVA)	\$0
TOTAL (\$2022)	\$0

Diagram V.1.1. Transfer Flow Diagram (% of Total Transfer)

Associated Electric Cooperative Balancing Authority Area (AECI) Results

Study Structure and Assumptions

Regional

Transfer Sensitivity	Amount	Source	Sink	Year						
DEC to SC	DEC	SC	2027							
	Load Flow Cases									
2022 Seri	2022 Series Version 1 SERTP Models: Winter Peak									

Transmission System Impacts

The following tables below identify any constraints attributable to the requested transfer for the contingency and scenario that resulted in the most significant loadings for the conditions studied. Other unit out scenarios or contingencies may also result in constraints to these or other facilities.

Table V.2.1. Pass 0 – Transmission System Impacts with No Enhancements – AECI

The following table identifies significant **AECI** thermal constraints without any enhancements to the transmission system.

			Thermal Lo	oadings (%)			
Area	Limiting Element	Rating (MVA)	Without Request	With Request	Contingency	Scenario	Project
AECI	None Identified	-	-	-	-		

Scenario Explanations:

Table V.2.2. Pass 1 – Potential Future Transmission System Impacts – AECI

The following table depicts thermal loadings of **AECI** transmission facilities that could become potential constraints in future years or with different queuing assumptions but are not overloaded in the study year with all proposed enhancements to the transmission system.

AreaLimiting ElementRating (MVA)With RequestWith RequestContingencyScenarioProjectAECINone Identified				Thermal L	oadings (%)			
AECI None Identified	Area	Limiting Element	U U			Contingency	Scenario	Project
	AECI	None Identified						

Scenario Explanations:

TRANSMISSION PLANNING

Southeastern

Regional

Table V.2.3. Potential Solutions for Identified Problems – AECI

The following table lists any potential solutions that were identified to address the significant thermal constraints in order to meet the request and assumptions used in the study. It must be noted that changes to the load forecast, and/or changes in the expansion plan could occur and would impact the results of this study. In addition, the currently projected improvements to the transmission system were modeled in the cases. Changes to system conditions and/or the transmission expansion plans could also impact the results of this study.

Item	Potential Solution	Estimated Need Date	Planning Level Cost Estimate				
	None Required						
	AECI TOTAL (\$2022)						

Duke Carolinas Balancing Authority Area (DEC) Results

Study Structure and Assumptions

Transfer Sensitivity	Amount	Source	Sink	Year					
DEC to SC	DEC	SC	2027						
Load Flow Cases									
2022 Series Version 1 SERTP Models: Winter Peak									

Transmission System Impacts

The following tables below identify any constraints attributable to the requested transfer for the contingency and scenario that resulted in the most significant loadings for the conditions studied. Other unit out scenarios or contingencies may also result in constraints to these or other facilities.

Table V.3.1. Pass 0 – Transmission System Impacts with No Enhancements – DEC

The following table identifies significant **DEC** thermal constraints without any enhancements to the transmission system.

			Thermal Lo	oadings (%)			
Area	Limiting Element	Rating (MVA)	Without Request	With Request	Contingency	Scenario	Project
DEC	None Identified						

Scenario Explanations:

Table V.3.2. Pass 1 – Potential Future Transmission System Impacts – DEC

The following table depicts thermal loadings of **DEC** transmission facilities that could become potential constraints in future years or with different queuing assumptions but are not overloaded in the study year with all proposed enhancements to the transmission system.

יד			Thermal L	oadings (%)			
Area	Limiting Element	Rating (MVA)	Without Request	With Request	Contingency		Project
DEC	Oakboro Tie – Harrisburg Tie 230 kV TL	464	86.6	94.8	Loss of Parallel Oakboro Tie – Harrisburg Tie 230 kV TL	1	A1*

Scenario Explanations:

1. VACAR Reserve Share Cases

*Solutions are presented in Appendix I

Table V.3.3. Potential Solutions for Identified Problems – DEC

Southeastern

TRANSMISSION PLANNING

Regional

The following table lists any potential solutions that were identified to address the significant thermal constraints in order to meet the request and assumptions used in the study. It must be noted that changes to the load forecast, and/or changes in the expansion plan could occur and would impact the results of this study. In addition, the currently projected improvements to the transmission system were modeled in the cases. Changes to system conditions and/or the transmission expansion plans could also impact the results of this study.

Item	Potential Solution	Estimated Need Date	Planning Level Cost Estimate				
	None Required						
	DEC TOTAL (\$2022)						

Duke Progress East Balancing Authority Area (DEPE) Results

Study Structure and Assumptions

Transfer Sensitivity	Amount	Source	Sink	Year						
DEC to SC	DEC	SC	2027							
Load Flow Cases										
2022 Seri	2022 Series Version 1 SERTP Models: Winter Peak									

Transmission System Impacts

The following tables below identify any constraints attributable to the requested transfer for the contingency and scenario that resulted in the most significant loadings for the conditions studied. Other unit out scenarios or contingencies may also result in constraints to these or other facilities.

Table V.4.1. Pass 0 – Transmission System Impacts with No Enhancements – DEPE

The following table identifies significant **DEPE** thermal constraints without any enhancements to the transmission system.

	Thermal I		oadings (%)				
Area	Limiting Element	Rating (MVA)	Without Request	With Request	Contingency	Scenario	Project
DEPE	None Identified	-	-	-	-	-	-

Scenario Explanations:

Table V.4.2. Pass 1 – Potential Future Transmission System Impacts – DEPE

The following table depicts thermal loadings of **DEPE** transmission facilities that could become potential constraints in future years or with different queuing assumptions but are not overloaded in the study year with all proposed enhancements to the transmission system.

			Thermal L	oadings (%)			
Area	Limiting Element	Rating (MVA)	Without Request	With Request	Contingency	Scenario	Project
DEPE	304435 3MAXTON 115 304440 3IND 304440 115 1	120	98.94	98.98	304047 3WSPOON115 T 115 305099 3E10-WESTLUM 115 1		NA ¹

Scenario Explanations:

1. DEP project to reconductor section by 2022

Table V.4.3. Potential Solutions for Identified Problems – DEPE

Southeastern

TRANSMISSION PLANNING

Regional

The following table lists any potential solutions that were identified to address the significant thermal constraints in order to meet the request and assumptions used in the study. It must be noted that changes to the load forecast, and/or changes in the expansion plan could occur and would impact the results of this study. In addition, the currently projected improvements to the transmission system were modeled in the cases. Changes to system conditions and/or the transmission expansion plans could also impact the results of this study.

ltem	Potential Solution	Estimated Need Date	Planning Level Cost Estimate			
	None Required					
	DEPE TOTAL (\$2022)					

2022 Economic Planning Studies

Duke Progress West (DEPW) Results

Study Structure and Assumptions

Transfer Sensitivity	SC 600 MW DEC SC 2027 Load Flow Cases											
Load Flow Cases												
2022 Seri	es Version 1 SERTI	P Models: Winter Peak		Load Flow Cases 2022 Series Version 1 SERTP Models: Winter Peak								

Transmission System Impacts

The following tables below identify any constraints attributable to the requested transfer for the contingency and scenario that resulted in the most significant loadings for the conditions studied. Other unit out scenarios or contingencies may also result in constraints to these or other facilities.

Table V.5.1. Pass 0 – Transmission System Impacts with No Enhancements – DEPW

The following table identifies significant **DEPW** thermal constraints without any enhancements to the transmission system.

			Thermal L	oadings (%)			
Area	Limiting Element	Rating (MVA)	Without Request	With Request	Contingency	Scenario	Project
DEPW	None Identified	-	-	-	-	-	-

Scenario Explanations:

Table V.5.2. Pass 1 – Potential Future Transmission System Impacts – DEPW

The following table depicts thermal loadings of **DEPW** transmission facilities that could become potential constraints in future years or with different queuing assumptions but are not overloaded in the study year with all proposed enhancements to the transmission system.

AreaLimiting ElementRating (MVA)Without RequestWith RequestContingencyScenarioProjectDEPWNone Identified				Thermal Lo	oadings (%)			
DEPW None Identified	Area	Limiting Element	-			Contingency	Scenario	Project
	DEPW	None Identified						

Scenario Explanations:

Table V.5.3. Potential Solutions for Identified Problems – DEPW

The following table lists any potential solutions that were identified to address the significant thermal constraints in order to meet the request and assumptions used in the study. It must be noted that changes to the load forecast, and/or changes in the expansion plan could occur and would impact the results of this study. In addition, the currently projected improvements to the transmission system were modeled in the cases. Changes to system conditions and/or the transmission expansion plans could also impact the results of this study.

Item	Potential Solution	Estimated Need Date	Planning Level Cost Estimate			
	None Required					
	DEPW TOTAL (\$2022)					

Gulf Power (GP) Results

Study Structure and Assumptions

Transfer Sensitivity	Amount	Source	Sink	Year				
DEC to SC	600 MW	DEC	SC	2027				
Load Flow Cases								
2022 Series Version 1 SERTP Models: Winter Peak								

Transmission System Impacts

The following tables below identify any constraints attributable to the requested transfer for the contingency and scenario that resulted in the most significant loadings for the conditions studied. Other unit out scenarios or contingencies may also result in constraints to these or other facilities.

Table V.6.1. Pass 0 – Transmission System Impacts with No Enhancements – GP

The following table identifies significant *GP* thermal constraints without any enhancements to the transmission system.

				Thermal L	oadings (%)			
А	Area	Limiting Element	Rating (MVA)	Without Request	With Request	Contingency	Scenario	Project
(GP	None Identified						

Scenario Explanations:

Table V.6.2. Pass 1 – Potential Future Transmission System Impacts – GP

The following table depicts thermal loadings of *GP* transmission facilities that could become potential constraints in future years or with different queuing assumptions but are not overloaded in the study year with all proposed enhancements to the transmission system.

AreaLimiting ElementRating (MVA)Without RequestWith RequestContingencyScenarioProjectGPNone Identified				Thermal L	oadings (%)			
GP None Identified	Area	Limiting Element	U U			Contingency	Scenario	Project
	GP	None Identified						

Scenario Explanations:

Table V.6.3. Potential Solutions for Identified Problems – GP

Regional

The following table lists any potential solutions that were identified to address the significant thermal constraints in order to meet the request and assumptions used in the study. It must be noted that changes to the load forecast, and/or changes in the expansion plan could occur and would impact the results of this study. In addition, the currently projected improvements to the transmission system were modeled in the cases. Changes to system conditions and/or the transmission expansion plans could also impact the results of this study.

ltem	Potential Solution	Estimated Need Date	Planning Level Cost Estimate				
	None Required						
	GP TOTAL (\$2022)						

Louisville Gas & Electric and Kentucky Utilities Balancing Authority Area (LG&E/KU) Results

Study Structure and Assumptions

Southeastern

TRANSMISSION PLANNING

Regional

Transfer Sensitivity	Amount	Source	Sink	Year				
DEC to SC	600 MW	DEC	SC	2027				
Load Flow Cases								
2022 Seri	es Version 1 SERTI	P Models: Winter Peak						

Transmission System Impacts

The following tables below identify any constraints attributable to the requested transfer for the contingency and scenario that resulted in the most significant loadings for the conditions studied. Other unit out scenarios or contingencies may also result in constraints to these or other facilities.

Table V.7.1. Pass 0 – Transmission System Impacts with No Enhancements – LG&E/KU

The following table identifies significant *LG&E/KU* thermal constraints without any enhancements to the transmission system.

			Thermal L	oadings (%)			
Area	Limiting Element	Rating (MVA)	Without Request	With Request	Contingency	Scenario	Project
LG&E/KU	None Identified						

Scenario Explanations:

Table V.7.2. Pass 1 – Potential Future Transmission System Impacts – LG&E/KU

The following table depicts thermal loadings of *LG&E/KU* transmission facilities that could become potential constraints in future years or with different queuing assumptions but are not overloaded in the study year with all proposed enhancements to the transmission system.

(MVA) Request Request				Thermal Lo	oadings (%)			
	Area	Limiting Element	•			Contingency	Scenario	Project
LG&E/KU None identified	LG&E/KU	None Identified						

Scenario Explanations:

TRANSMISSION PLANNING

Southeastern

Regional

Table V.7.3. Potential Solutions for Identified Problems – *LGE/KU*

The following table lists any potential solutions that were identified to address the significant thermal constraints in order to meet the request and assumptions used in the study. It must be noted that changes to the load forecast, and/or changes in the expansion plan could occur and would impact the results of this study. In addition, the currently projected improvements to the transmission system were modeled in the cases. Changes to system conditions and/or the transmission expansion plans could also impact the results of this study.

ltem	Potential Solution	Estimated Need Date	Planning Level Cost Estimate				
	None Required		-				
	LGE/KU TOTAL (\$2022)						

PowerSouth (PS) Results

Study Structure and Assumptions

Transfer Sensitivity	Amount	Source	Sink	Year					
DEC to SC	DEC to SC 600 MW DEC SC 2027								
Load Flow Cases									
2022 Seri	2022 Series Version 1 SERTP Models: Winter Peak								

Transmission System Impacts

The following tables below identify any constraints attributable to the requested transfer for the contingency and scenario that resulted in the most significant loadings for the conditions studied. Other unit out scenarios or contingencies may also result in constraints to these or other facilities.

Table V.8.1. Pass 0 – Transmission System Impacts with No Enhancements – PS

The following table identifies significant **PS** thermal constraints without any enhancements to the transmission system.

			Thermal L	oadings (%)			
Area	Limiting Element	Rating (MVA)	Without Request	With Request	Contingency	Scenario	Project
PS	None Identified	-	-	-	-	-	-

Scenario Explanations:

Table V.8.2. Pass 1 – Potential Future Transmission System Impacts – PS

The following table depicts thermal loadings of **PS** transmission facilities that could become potential constraints in future years or with different queuing assumptions but are not overloaded in the study year with all proposed enhancements to the transmission system.

Area Limiting Element Rating (MVA) Without Request With With Contingency Scenario				Thermal L	oadings (%)			
	Area	Limiting Element	-			Contingency	Scenario	Project
PS None Identified	PS	None Identified				-		

Scenario Explanations:

Table V.8.3. Potential Solutions for Identified Problems – PS

Southeastern

TRANSMISSION PLANNING

Regional

The following table lists any potential solutions that were identified to address the significant thermal constraints in order to meet the request and assumptions used in the study. It must be noted that changes to the load forecast, and/or changes in the expansion plan could occur and would impact the results of this study. In addition, the currently projected improvements to the transmission system were modeled in the cases. Changes to system conditions and/or the transmission expansion plans could also impact the results of this study.

Item	Potential Solution	Estimated Need Date	Planning Level Cost Estimate				
	None Required						
	AECI TOTAL (\$2022)						

2022 Economic Planning Studies

Southern Balancing Authority Area (SBAA) Results

Study Structure and Assumptions

Transfer Sensitivity	Amount	Source	Sink	Year					
DEC to SC	DEC to SC 600 MW DEC SC 2027								
Load Flow Cases									
2022 Seri	2022 Series Version 1 SERTP Models: Winter Peak								

Transmission System Impacts

The following tables below identify any constraints attributable to the requested transfer for the contingency and scenario that resulted in the most significant loadings for the conditions studied. Other unit out scenarios or contingencies may also result in constraints to these or other facilities.

Table V.9.1. Pass 0 – Transmission System Impacts with No Enhancements – SBAA

The following table identifies significant **SBAA** thermal constraints without any enhancements to the transmission system.

			Thermal Lo	oadings (%)			
Area	Limiting Element	Rating (MVA)	Without Request	With Request	Contingency	Scenario	Project
SBAA	None Identified						

Scenario Explanations:

Table V.9.2. Pass 1 – Potential Future Transmission System Impacts – SBAA

The following table depicts thermal loadings of **SBAA** transmission facilities that could become potential constraints in future years or with different queuing assumptions but are not overloaded in the study year with all proposed enhancements to the transmission system.

			Thermal Lo	oadings (%)			
Area	Limiting Element	Rating (MVA)	Without Request	With Request	Contingency	Scenario	Project
SBAA							

Scenario Explanations:

Table V.9.3. Potential Solutions for Identified Problems – SBAA

Southeastern

TRANSMISSION PLANNING

Regional

The following table lists any potential solutions that were identified to address the significant thermal constraints in order to meet the request and assumptions used in the study. It must be noted that changes to the load forecast, and/or changes in the expansion plan could occur and would impact the results of this study. In addition, the currently projected improvements to the transmission system were modeled in the cases. Changes to system conditions and/or the transmission expansion plans could also impact the results of this study.

ltem	Item Potential Solution Estimated Need Date				
	None Required				
	SBAA TOTAL (\$2022)				

Tennessee Valley Authority Balancing Authority Area (TVA) Results

Study Structure and Assumptions

Regional

Transfer Sensitivity	Amount	Source	Sink	Year				
DEC to SC 600 MW DEC SC 2027								
Load Flow Cases								
2022 Series Version 1 SERTP Models: Winter Peak								

Transmission System Impacts

The following tables below identify any constraints attributable to the requested transfer for the contingency and scenario that resulted in the most significant loadings for the conditions studied. Other unit out scenarios or contingencies may also result in constraints to these or other facilities.

Table V.10.1. Pass 0 – Transmission System Impacts with No Enhancements – TVA

The following table identifies significant **TVA** thermal constraints without any enhancements to the transmission system.

			Thermal L	oadings (%)			
Area	Limiting Element	Rating (MVA)	Without Request	With Request	Contingency	Scenario	Project
TVA	None Identified	-	-	-	-	-	-

Scenario Explanations:

Table V.10.2. Pass 1 – Potential Future Transmission System Impacts – TVA

The following table depicts thermal loadings of **TVA** transmission facilities that could become potential constraints in future years or with different queuing assumptions but are not overloaded in the study year with all proposed enhancements to the transmission system.

AreaLimiting ElementRating (MVA)With RequestWith RequestContingencyScenarioProjectTVANone Identified				Thermal L	oadings (%)			
TVA None Identified	Area	Limiting Element	U U			Contingency	Scenario	Project
	TVA	None Identified						

Scenario Explanations:

Table V.10.3. Potential Solutions for Identified Problems – TVA

Southeastern

TRANSMISSION PLANNING

Regional

The following table lists any potential solutions that were identified to address the significant thermal constraints in order to meet the request and assumptions used in the study. It must be noted that changes to the load forecast, and/or changes in the expansion plan could occur and would impact the results of this study. In addition, the currently projected improvements to the transmission system were modeled in the cases. Changes to system conditions and/or the transmission expansion plans could also impact the results of this study.

Item	Item Potential Solution Estimated Need Date				
	None Required				
	TVA TOTAL (\$2022)				

6. Appendix I

Southeastern

TRANSMISSION PLANNING

Regional

The additional solution information below is provided for the DEC balancing authority only, for each of the stakeholder requested transfers included in the Economic Planning Studies performed in 2022. While this optional information is not required by the tariff, it illustrates the potential issues that may be present in future years if large transfers of this nature are requested.

These potential solutions and estimated need dates represent the extrapolation beyond the traditional 10year study timeframe of DEC facilities that were identified as 90% or greater of the thermal rating in the 2022 studies. It is important to note that there may be additional constraints that could be identified in models for years beyond the specific study year used for these evaluations.

The solutions listed are provided as information only and do not represent any commitment to build.

ltem	Potential Solution	Planning Level Cost Estimate				
A1	Lee Combustion – Belton Tie 100 kV TLA1Rebuild the Lee Combustion – Belton Tie 100 kV TL with 1272 ACSR2039 rated at 120 °C (6.4 miles)					
A2	Clark Hill 115/100 kV TransformerA2Upgrade the lowside terminal of the 115/100 kV Transformer to improve rating of transformer2035					
A3	Central Tie – Shady Grove Tie 230 kV TLA3Reconductor the Central Tie – Shady Grove Tie 230 kV TL with 1158 ACSS/TW rated at 200°C (17.8 Miles)					
A4	Lee Combustion – Toxaway Tie 100 kV TL Rebuild the Lee Combustion – Toxaway Tie 100kV TL with 1272 ACSR rated at 120 °C (13.5 miles)	2034	\$54,000,000			
А5	Riverbend Switching – Dixon School Rd Switching 230 kV TL Upgrade the terminal at Riverbend Switching Station of the Riverbend Switching – Dixon School Rd Switching 230 kV TL to increase the rating of the line	2040	\$5,000,000			
	DEC TOTAL (\$2022)					

Table A.1. Solutions for Identified Potential Problems for Study 1: 1000 MW SOCO - DEC

Table A.2 Solutions for Identified Potential Problems for Study 2: 1000 MW SCE&G - DEC

Item	Potential Solution	Estimated Need Date	Planning Level Cost Estimate		
A1	Lee Combustion – Belton Tie 100 kV TL Rebuild the Lee Combustion – Belton Tie 100 kV TL with 1272 ACSR rated at 120 °C (6.4 miles)	2039	\$26,000,000		
A2	Clark Hill – Thurmond Hydro 115 kV TL Rebuild the Clark Hill – Thurmond Hydro 115 kV TL with 954 ACSR rated at 120 °C (36 miles)	2038	\$144,000,000		
А3	Central Tie – Shady Grove Tie 230 kV TL Reconductor the Central Tie – Shady Grove Tie 230 kV TL with 1158 ACSS/TW rated at 200°C (17.8 Miles)	2038	\$89,000,000		
A4	Lee Combustion – Toxaway Tie 100 kV TL Rebuild the Lee Combustion – Toxaway Tie 100kV TL with 1272 ACSR rated at 120 °C (13.5 miles)	2038	\$54,000,000		
A5	Bush River Tie – Saluda Hydro (DESC) 115 kV TL Rebuild the Bush River Tie – Saluda Hydro (DESC) 115 kV TL with 954 ACSR rated at 120 °C (11.35 Miles)	2041	\$42,000,000		
A6	Lee Combustion – Belton Tie 100 kV TL Rebuild the Lee Combustion – Belton Tie 100 kV TL with 1272 ACSR rated at 120 °C (6.4 miles)	2039	\$26,000,000		
	DEC TOTAL (\$2022)				

(1) Total planning level cost estimate does not include the cost of projects that are included in SERTP Sponsors' expansion plans and are scheduled to be completed by June 1st of the study year. The studied transfer depends on these projects being in-service, and the cost to support the study transfer could be greater than the total shown above if any of these projects are delayed or cancelled.

Table A.3 Solutions for Identified Potential Problems for Study 5: 600 MW DEC - SC

Item	Potential Solution	Estimated Need Date	Planning Level Cost Estimate
A1	Oakboro Tie – Harrisburg Tie 230 kV TL Rebuild the Oakboro Tie – Harrisburg Tie 230 kV TL with bundled 1272 ACSR conductor rated at 120 °C (21.6 miles)	2039	\$108,000,000
	\$108,000,000 ⁽¹⁾		