### $SERTP \ \ Southeastern \ Regional \ Transmission \ Planning$



November 27, 2024

Regional Transmission Plan & Input Assumptions Overview

#### **Table of Contents**

| l.   | SERTP Overview                           | 3    |
|------|------------------------------------------|------|
| II.  | SERTP Transmission Planning Approach     | 7    |
| III. | SERTP Regional Modeling                  | . 15 |
| IV.  | SERTP Regional Transmission Plan Summary | . 21 |
| V.   | SERTP Regional Transmission Plan         | . 22 |
| VI.  | Appendix 1: AECI BAA                     | 148  |
| VII. | Appendix 2: Duke Energy Carolinas BAA    | 151  |
| VIII | .Appendix 3: Duke Progress East BAA      | 162  |
| IX.  | Appendix 4: Duke Progress West BAA       | 176  |
| X.   | Appendix 5: LG&E/KU BAA                  | 179  |
| XI.  | Appendix 6: Southern BAA                 | 183  |
| ΧII  | Appendix 7: TVA BAA                      | 206  |



#### I. SERTP Overview

#### About the SERTP

The Southeastern Regional Transmission Planning (SERTP) process is a collaboration of ten (10) transmission planning entities in a twelve (12) state area that coordinates regional transmission planning activities and provides an open and transparent transmission planning forum to engage with stakeholders regarding transmission plans in the region. The SERTP region was initially developed by six (6) sponsors to provide an open and transparent regional transmission planning process and to otherwise comply with the Federal Energy Regulatory Commission's (FERC) Order 890, which was issued in 2007. The SERTP region expanded several times in size and scope. The SERTP region's implementation of FERC's Order 1000, issued in 2011, to establish regional and interregional transmission planning and cost allocation requirements, became effective beginning June 1, 2014. The SERTP region includes three (3) FERC jurisdictional investor-owned utilities and six (6) non-jurisdictional, non-profit public utilities, who have a longstanding history of collaboration in transmission planning activities and who have voluntarily elected to participate in the SERTP region. The expanded SERTP region is one of the largest regional transmission planning regions in the United States.

#### The SERTP Regional Transmission Plan

The SERTP provides an open and transparent transmission planning process. The SERTP transmission modeling, expansion plans, and other materials are publicly available and provide extensive data regarding the sponsors' transmission systems. Stakeholders can utilize this data to replicate the transmission planning performed through the SERTP as well as to assess a wide range of sensitivities and scenarios of interest.

This SERTP Regional Transmission Plan & Input Assumptions Overview document, which is produced annually, is intended to provide an overview of the 2024 cycle's regional modeling, key assumptions and philosophies, and expansion planning results suitable for any interested stakeholder, as it does not include Critical Energy Infrastructure Information (CEII) materials. Materials which include CEII are also available, subject to completion of the CEII request and certification process. Additional information is available through the SERTP website (<a href="http://www.southeasternrtp.com/">http://www.southeasternrtp.com/</a>).



The SERTP

#### Associated Electric Cooperative (AECI)

### Associated Electric Cooperative Inc.

AECI, a Generation and Transmission (G&T) rural electric cooperative, provides electric service across approximately 75,000 square miles in three states. Headquartered in Springfield, Missouri, AECI serves approximately 875,000 ultimate members through six regional G&Ts and 51 distribution cooperatives. AECI and its six regional G&Ts own over 9,800 miles of transmission lines operated at 69 through 500 kV.

Dalton Utilities (Dalton)



Dalton Utilities provides electric services in Dalton, Georgia and five surrounding counties. Headquartered in Dalton, Georgia, Dalton Utilities serves approximately 18,000 customers and owns over 350 miles of transmission lines.

Duke Energy (Duke)



Duke Energy provides electric service across 95,000 square miles in 6 states. Headquartered in Charlotte, NC, Duke Energy serves approximately 7.3 million customers and owns over 19,000 miles of transmission lines.

Two Duke Energy subsidiaries, Duke Energy Carolinas and Duke Energy Progress, are represented on the SERTP.

#### Georgia Transmission Corporation (GTC)



GTC, an electric membership corporation formed in 1997 through a restructuring of Oglethorpe Power Corporation, provides electric service to 38 retail distribution cooperative members in Georgia. Headquartered in Tucker, Georgia, GTC owns approximately 3,150 miles of transmission lines and its members serve approximately 4 million people.

#### Louisville Gas & Electric and Kentucky Utilities (LG&E/KU)



LG&E/KU, an investor-owned utility, provides electric service across 6,100 square miles in two states. Headquartered in Louisville, KY, LG&E/KU serves approximately 940,000 customers and 2,700 miles of transmission lines.



#### Municipal Electric Authority of Georgia (MEAG)



MEAG, a public corporation and an instrumentality of the State of Georgia, provides electric service to 48 cities and one county in Georgia. Headquartered in Atlanta, Georgia, MEAG serves approximately 310,000 customers and owns over 1,320 miles of transmission lines.

#### PowerSouth Electric Cooperative (PowerSouth)



PowerSouth, a generation and transmission cooperative consisting of 16 distribution cooperatives and 4 municipal systems, provides electric service across 31,000 square miles in 2 states. Headquartered in Andalusia, Alabama, PowerSouth serves approximately 418,000 customers and owns over 2.300 miles of transmission lines.

#### Southern Company (Southern)



Southern Company, a leading U.S. producer of clean, safe, reliable, and affordable energy, includes three electric utility companies that provide electric service across approximately 120,000 square miles in three states. Headquartered in Atlanta, Georgia, Southern Company serves approximately 9 million electric customers and owns over 27,000 miles of transmission lines

#### Tennessee Valley Authority (TVA)



TVA, a federally-owned electrical utility, provides electric service across 80,000 square miles in 7 states. Headquartered in Knoxville, TN, TVA serves approximately 10 million customers and owns over 16,400 miles of transmission lines.



#### SERTP Region Scope

The SERTP region is located within 12 states, roughly spanning over 600 miles north to south and 1,100 miles east to west. The SERTP region is one of the largest transmission planning regions in the Eastern Interconnection in terms of transmission line miles and based upon customer peak demand. The seven (7) NERC Balancing Authority Areas ("BAAs") in the SERTP region serve combined peak loads totaling more than 130,000 MWs.

Table I.1: State by State Breakdown of the SERTP

|     | •              |                                  |
|-----|----------------|----------------------------------|
| No. | SERTP States   | SERTP                            |
| 1   | Alabama        | PowerSouth, Southern, TVA        |
| 2   | Florida        | PowerSouth                       |
| 3   | Georgia        | Dalton, GTC, MEAG, Southern, TVA |
| 4   | Iowa           | AECI                             |
| 5   | Kentucky       | LG&E/KU, TVA                     |
| 6   | Mississippi    | Southern, TVA                    |
| 7   | Missouri       | AECI                             |
| 8   | North Carolina | Duke, TVA                        |
| 9   | Oklahoma       | AECI                             |
| 10  | South Carolina | Duke                             |
| 11  | Tennessee      | TVA                              |
| 12  | Virginia       | LG&E/KU, TVA                     |
|     |                |                                  |



### II. SERTP Transmission Planning Approach

#### Physical Transmission Delivery Service Markets

The fundamental purpose of the transmission system is to enable transmission users the opportunity to access their desired generating resource options to reliably and economically deliver power to serve their customers' loads. In the SERTP region, physical transmission delivery service markets allow transmission customers to procure long-term transmission service across the transmission system and receive dependable, firm delivery from resources to customer loads. The SERTP sponsors plan and expand the transmission system to reliably and economically satisfy the load projections, resource assumptions, public policy requirements, and transmission service commitments within the region. These transmission system delivery capacity requirements are typically driven by long-term, firm commitments and are planned with the intent that those who have made such commitments will be able to access their resources to serve load without congestion, constraint, or curtailment. In other words, the SERTP sponsors identify, evaluate, and implement efficient and cost-effective transmission expansion options to provide sufficient physical capacity to enable delivery of a long-term, firm transmission customer's service without impacting other long-term, firm delivery commitments, and with the intent that the service will normally be available without interruption or curtailment. The physical transmission delivery service markets in the SERTP region not only help to provide certainty in long-term delivery costs, but also minimize delivery risks for transmission users. The resulting planned physical transmission capacity provides for a robust, reliable, and resilient transmission system which responds well under a wide range of operating uncertainties and supports routine maintenance and construction activities.

#### Integrated Resource Planning and Transmission Planning Interaction

Although many long-term firm transmission delivery service commitments in the SERTP region are made by individual market participants, the majority are made by Load Serving Entities ("LSEs"). LSEs typically have a legal "duty to serve" obligation to reliably and proactively meet current and future load needs, and therefore procure energy, capacity, and transmission services to accomplish this objective. LSEs in the SERTP typically conduct Integrated Resource Planning ("IRP") processes on a reliable and least-cost basis to assess future load-serving needs, consider supply-side and demand-side options, and procure transmission delivery services. The IRP processes of LSEs, which are often state-regulated, consider a multitude of factors over a long-term horizon in their decisions to select resources and procure delivery services, including reliability, transmission impacts,

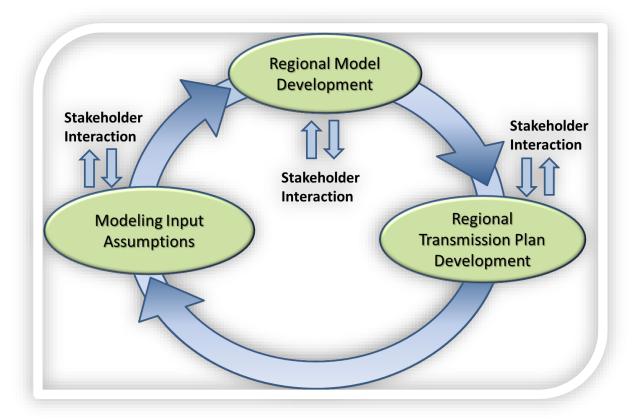


economics, environmental attributes, economic growth, energy efficiency, resource diversity, applicable regulations, fuel delivery, ancillary services, and construction lead-times. Specifically, LSEs use IRP processes to identify a cost-effective mix of supply-side and demand-side capacity resources to meet future requirements. The physical transmission delivery service markets in the SERTP region enable LSEs to base their decisions on long-term, total delivered costs without exposure to congestion pricing or significant delivery risks.

As LSEs make their resource decisions, these decisions and corresponding transmission service commitments are provided to the SERTP sponsors and form the basis for transmission planning assumptions in the SERTP region. Through their commitments for long-term, firm delivery service, LSEs communicate to the SERTP sponsors the set of resources their IRP processes have selected as best situated to serve their customers' long-term needs. This process significantly reduces uncertainties related to future resources and delivery needs and provides sufficient lead times to enable transmission facilities to be planned and constructed. The load forecasts, demand-side management programs, resource decisions, and corresponding firm transmission commitments resulting from the IRP activities of LSEs establish the majority of delivery obligations and modeling inputs for transmission planning in the SERTP region.

#### Customer Needs Lead to Continually Evolving Transmission Plans

Transmission planning in the SERTP region is focused on identifying reliable, cost-effective transmission projects to meet the long-term firm transmission delivery service obligations to transmission customers, and thereby assisting in serving their forecasted load obligations from their desired resource choices. Simply put, transmission plans are driven by customer transmission delivery service needs, and these needs can be constantly changing. Each year, load forecasts change, resource decisions change, and, as a result, transmission delivery service needs change. On a recurring basis, LSEs and other transmission customers communicate their delivery needs, which the SERTP incorporates into the latest transmission planning models and analyses. Planned transmission projects are reassessed to ensure that the proper scope and timing of the projects have been identified. Transmission projects are timed to coincide with delivery service needs; early enough to ensure physical capacity is in place to meet delivery commitments, but not so early as to incur significant carrying costs or limit flexibility if delivery needs change. Each year, planned transmission projects are often re-timed and, in some cases, eliminated.




Although the results of these planning efforts culminate annually into a regional transmission plan document, the regional transmission plan is continually re-evaluated as on-going changes in firm delivery service obligations, forecasted conditions, and identified-project alternatives arise. Therefore, the regional transmission plan is updated and improved upon on a recurring basis, often resulting in the identification of new cost-effective transmission project options, timing changes to existing transmission projects, and the potential removal of some transmission projects from the ten-year plan. This planning approach provides a seamless interaction with IRP processes such that as IRP decisions are made, the expected transmission impacts considered in those IRP decisions become reflected in the regional transmission plan, unless other, more cost-effective, reliable solutions have been identified for the then-current forecasted conditions. Similarly, the decisions of other types of market participants to procure long-term, firm transmission delivery service in the SERTP region are incorporated in the development of the regional transmission plan as well. These constantly changing customer needs drive a constantly changing regional transmission plan.

The SERTP develops a regional plan each year, but the plan is a "snapshot", solely intended to reflect the then-current transmission plan based upon then-current forecasted assumptions and transmission delivery service needs. Transmission planning is a very iterative process, with delivery needs and associated projects constantly evolving. From the start, transmission planning in the SERTP region reflects a high degree of coordination and joint modeling between neighboring systems. If reliability constraints are identified, the SERTP works to identify cost-effective, reliable transmission projects, not only on their respective transmission systems, but also considering potential transmission projects across two or more transmission systems. Transmission plans are shared with SERTP stakeholders at regular intervals during the year and the frequent engagement with stakeholders allows for additional inputs into potential project alternatives.

Diagram II.1 below illustrates the iterative nature of the SERTP process and the development of the regional transmission plan.

Diagram II.1: Iterative Regional Transmission Plan Development Process



#### Transmission Planning for Public Policy Requirements

In planning, constructing, operating, and maintaining the transmission system, the responsible transmission entities must meet all local, state, and federal laws/regulations applicable within their respective jurisdictions. These laws and regulations are referred to as public policy requirements ("PPRs"). The SERTP strives to meet all PPRs applicable to planning the transmission system. Although PPRs applicable to transmission planning vary by jurisdiction, some common examples of PPRs involving transmission planning include complying with applicable State Public Service Commission requirements, complying with Nuclear Regulatory Commission requirements related to offsite power, and planning consistent with applicable North American Electric Reliability Corporation ("NERC") Reliability Standards.

Although PPRs related to generating resource decisions are typically applicable to LSEs, these too can impact the development of the transmission plan. By offering physical transmission services, SERTP sponsors help facilitate applicable entities, such as LSEs, in meeting their PPR obligations related to resource decisions. As an example, assume a state-enacted PPR requires LSEs within the state to add additional renewable resources to their



generation mixes. An LSE, through its IRP analyses and processes, may determine that its most appropriate resource selection is to import renewable generation from a neighboring area. Alternatively, the LSE may determine that its most appropriate option is to interconnect new renewable generation locally. In either case, the LSE can provide its resource selection decisions through long-term, delivery service commitments to the SERTP sponsors, so that the SERTP can incorporate these input assumptions into the transmission expansion planning process to accommodate the delivery of the resource selections.

#### SERTP Regional Planning Process Timeline

As discussed earlier, the SERTP planning process is an iterative process that continually reevaluates the regional transmission plan based upon changes in actual and forecasted conditions. Often forecasted conditions can change, driven by inputs from native load and wholesale transmission customers such as their load-serving obligations and resource assumptions.

In light of these on-going changes, in a given planning cycle, transmission projects that may be included in the then-current regional plan are re-assessed by the SERTP sponsors, each applying its respective planning criteria, to determine: 1) if a given project continues to be needed, 2) if the timing of the projects should be adjusted, and 3) if potential alternatives exist that may be more reliable and cost-effective to address the underlying transmission capacity requirements.

Diagrams II.2 and II.3 below illustrate the approximate timing and objectives of the SERTP process. The flags in the diagram represent the quarterly meetings.

Diagram II.2: SERTP Process - Quarters 1 &2

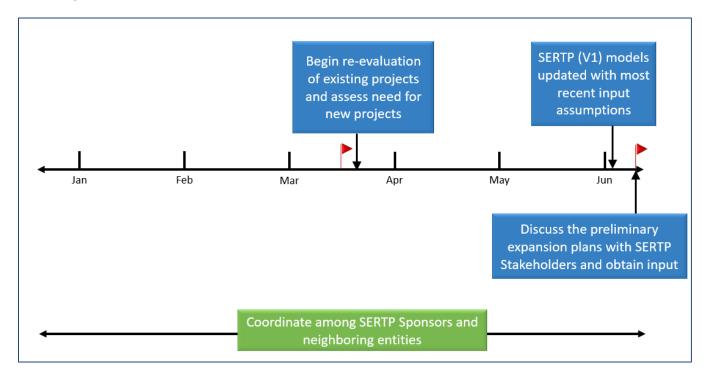
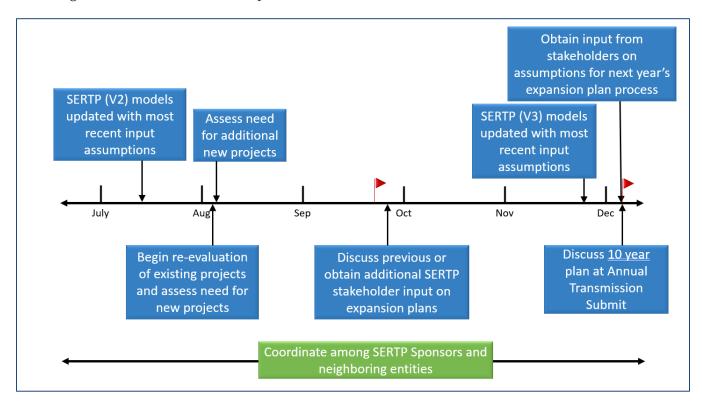




Diagram II.3: SERTP Process - Quarters 3 &4



#### The SERTP Region – A Robust, Reliable, Resilient Transmission System

The SERTP transmission planning approach has resulted in a robust transmission system intended to enable both native load and wholesale customers the right to use the underlying physical transmission capacity in the system associated with their long-term, firm transmission commitments. In fact, the SERTP region is one of the largest transmission planning regions in the Eastern Interconnection in terms of transmission line miles with approximately 82,000-line miles.

The 2024 regional transmission plan includes forecasted transmission projects to continue to reliably and cost-effectively provide for the transmission needs of the SERTP region. The planned physical transmission capacity provides for a continued robust, reliable, and resilient transmission system which responds well under a wide range of operating uncertainties and supports routine maintenance and construction activities.

Tables II.1 and II.2 below depict a snapshot of the major transmission expansion project types included in the regional transmission plan throughout the ten-year planning horizon.

Table II.1 2024 SERTP Regional Transmission Plan – Transmission Project Snapshot

| SERTP                                     | Total  |
|-------------------------------------------|--------|
| Transmission lines – New                  | 1634.1 |
| (Circuit Mi.)                             | 1054.1 |
| Transmission Lines – Uprates <sup>1</sup> | 2257.4 |
| (Circuit Mi.)                             | 2257.4 |
| Transformers – New                        | 28     |
| Transformers – Replacements               | 10     |
| Power Flow Control Devices                | 2      |
| Static Compensators                       | 2      |

<sup>&</sup>lt;sup>1</sup> A transmission line uprate may be the result of reconductoring and/or increasing the operating temperature/voltage along the transmission line.

Table II.2 2024 SERTP Regional Transmission Plan – Transmission Project Snapshot by operating voltage

| CERTR                                     | 100-120 | 121-150 | 151-199 | 200-299 | 300-399 | 400-550 |
|-------------------------------------------|---------|---------|---------|---------|---------|---------|
| SERTP                                     | kV      | kV      | kV      | kV      | kV      | kV      |
| Transmission lines – New                  | 120.0   | 0.0     | 187.4   | 763.7   | 0.0     | E4E 0   |
| (Circuit Mi.)                             | 138.0   | 0.0     | 187.4   | 703.7   | 0.0     | 545.0   |
| Transmission Lines – Uprates <sup>1</sup> | 1480.9  | 30.2    | 263.6   | 482.8   | 0.0     | 0.0     |
| (Circuit Mi.)                             | 1460.9  | 30.2    | 205.0   | 402.0   | 0.0     | 0.0     |
| Transformers <sup>2</sup> – New           | 2       | 0       | 0       | 11      | 0       | 15      |
| Transformers <sup>2</sup> – Replacements  | 0       | 0       | 0       | 10      | 0       | 0       |
| Power Flow Control Devices                | 0       | 0       | 0       | 2       | 0       | 0       |
| Static Compensators                       | 0       | 0       | 0       | 2       | 0       | 0       |

<sup>&</sup>lt;sup>1</sup> A transmission line uprate may be the result of reconductoring and/or increasing the operating temperature/voltage along the transmission line.

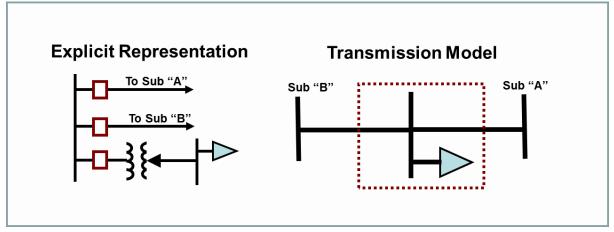
 $<sup>^{2}</sup>$  The voltages shown represent the operating voltages on the high side terminals of the transformer.

### III. SERTP Regional Modeling

#### Regional Model Development

The SERTP annually develops regional power flow models, which include the coordinated inputs and assumptions needed to support on-going regional transmission planning analyses. These models, which are available to SERTP stakeholders via the <u>secure area</u> of the SERTP website, are utilized by SERTP sponsors to perform regional transmission planning analyses and are also well suited to support SERTP stakeholders in conducting a wide range of scenarios and sensitivities that may be of interest. Table III.1 below provides a list of the 2024 series set of SERTP power flow models. Additional models may be developed on an "ad hoc" basis based upon the requirements of the then-current planning cycle.

Table III.1: 2024 Series set of SERTP Power flow Models


| No. | Season   | Year | MMWG Starting<br>Point Model |
|-----|----------|------|------------------------------|
| 1   | Summer   | 2026 | 2025 SUM                     |
| 2   | Summer   | 2029 | 2028 SUM                     |
| 3   | Summer   | 2034 | 2033 SUM                     |
| 4   | Shoulder | 2029 | 2028 SSH                     |
| 5   | Winter   | 2029 | 2028 WIN                     |
| 6   | Winter   | 2034 | 2033 WIN                     |

The SERTP regional power flow models provide representations of the existing transmission topology plus forecasted topology changes throughout the ten-year planning horizon. In addition, these models incorporate the input assumptions provided by LSEs and other transmission customers for use in planning the transmission system.

The power flow models provide a comprehensive representation of the actual and forecasted transmission system so that simulations of the transmission system's ability to reliably accommodate firm delivery service commitments can be performed. The SERTP conducts interactive stakeholder training on modeling and analysis techniques each year intended to help stakeholders better understand and utilize the abundance of information provided in these materials. More information on previous training presentations can be found on the SERTP website. In the models, transmission lines, transformers, and substations are modeled as branches and nodes (buses). In general, radial transmission facilities only serving load with one source are typically not considered Bulk Electric System (BES) facilities and therefore, are not explicitly modeled.

Diagram III.1 depicts a simple example of how an explicit substation representation might be reflected in the power flow models.

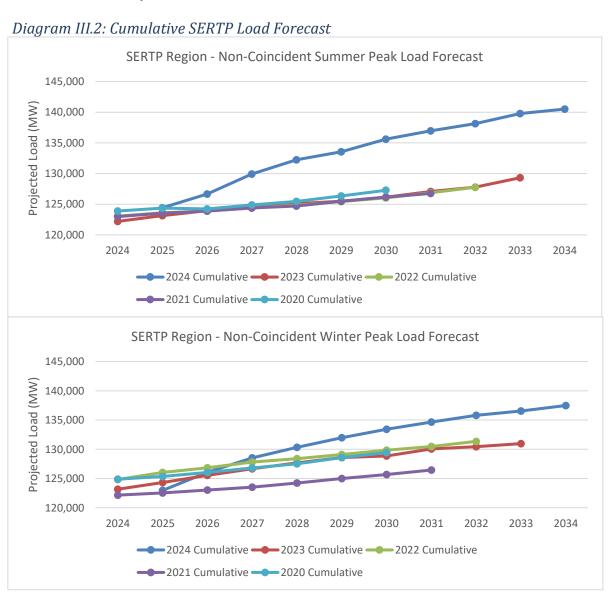
Diagram III.1: SERTP Power flow Model Substation Representation – Simple Example



The regional power flow models are considered and marked as Critical Energy Infrastructure Information (CEII). The Federal Energy Regulatory Commission defines CEII as being specific engineering, vulnerability, or detailed design information about proposed or existing critical infrastructure (physical or virtual) that:

- 1) Relates details about the production, generation, transmission, or distribution of energy
- 2) Could be useful to a person planning an attack on the critical infrastructure
- 3) Is exempt from mandatory disclosure under the Freedom of Information Act
- 4) Does not simply give the general location of the critical infrastructure

The SERTP models and other CEII materials are available to SERTP stakeholders, but are kept in the <u>secure area</u> of the SERTP website for the reasons discussed above. The process by which a stakeholder can obtain access to CEII can be found on the <u>SERTP website</u>.


#### Regional Modeling Input Assumptions

Vast amounts of data and information, such as the SERTP regional models, are available to all SERTP stakeholders, but are generally more geared towards an engineering audience. Therefore, the summaries below are intended to provide an overview of the modeling assumptions. Section III and Appendices 1-7 include detailed information on the input assumptions reflected in the regional power flow models and considered in the transmission planning process. The data shown is representative of the input assumptions

provided by LSEs and other transmission customers for specific use in planning the transmission system during the 2024 planning cycle.

#### **Load Forecasts**

LSEs, who are responsible for identifying and securing the firm transmission delivery services necessary to meet their current and forecasted load serving requirements, annually supply the SERTP sponsors with revised load forecasts. The SERTP incorporates the latest load forecasts from each LSE into the latest series of SERTP power flow models. Diagram III.2 provides cumulative load forecast trends by year for the SERTP region for each of the last five years.





The SERTP power flow models provide more detailed information on the forecasted load. The 2024 series SERTP power flow models are made available through the <u>secure area</u> of the SERTP website.

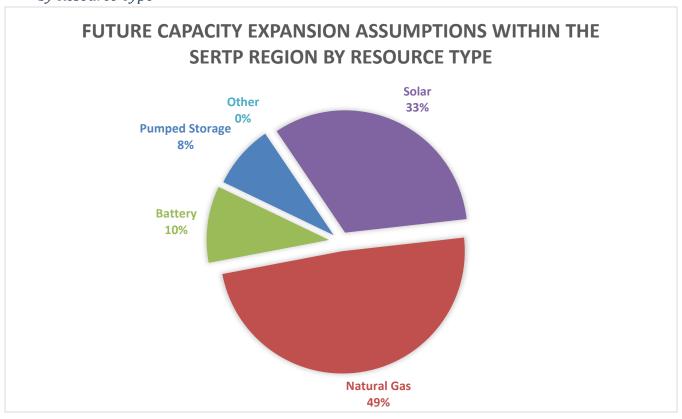
#### **Energy Efficiency and Demand Side Management**

The load forecasts provided by LSEs often reflect reduced load serving requirements for particular loads based upon energy efficiency ("EE") and demand side management ("DSM") options. Such options are developed as a part of each individual LSE's IRP processes on a state-by-state and program-by-program basis and therefore can vary in structure and operational characteristics. The transmission planning process in the SERTP necessarily plans for each LSE's loads consistent with their desired treatment of such loads. While each LSE may treat their load forecasting process and assumptions differently, the following describes the typical treatment of energy efficiency and demand side resources.

LSEs proactively seek out DSM options that are economical and of interest to customers. In many cases, such DSM options are setup and implemented under the purview of state-approved programs, and therefore the LSE treats the DSM options in its load forecasting process consistent with the parameters of such programs. Energy efficiency and non-dispatchable (passive) demand side resources are typically treated as load-modifying and are reflected in a reduced load forecast provided by the LSEs and incorporated in the SERTP transmission planning models. Dispatchable (active) demand side resources are accounted for and considered as part of the resource decisions that are provided by each LSE. LSEs often do not treat these demand side resources as load-modifying when supplying load forecast assumptions into the SERTP process because of a multitude of factors, including but not limited to:

- A significant number of exposure hours can greatly exceed the number of hours a DSM resource may be available;
- Relying upon active DSM to address transmission constraints can lead to response fatigue from customers and potential withdrawal from DSM programs; or
- The operational characteristics of active DSM resources may be insufficient to address transient transmission needs.

#### **Generating Resources**


The 2024 series SERTP power flow models available on the secure area of the SERTP website contain information on each of the generating resources connected within the SERTP

region as well as those that are planned to be connected within the ten-year planning horizon. Detailed tabular reports on such information can be created for the power flow models utilizing PSS/E software.

LSEs and market participants routinely make changes in their generation resource assumptions and associated transmission delivery service commitments. These changes can have many different drivers, including the selection of new resources, the retirement of generation, and the expiration of purchase power agreements. The SERTP reflects the latest generation resource assumptions, as provided by LSEs, in the then-current modeling and transmission planning analyses.

Appendices 1 through 7 depict changes in the generation resource assumptions that occur across the ten (10) year transmission planning horizon, including the year(s) in which they occur for each BAA in the SERTP region. Several of the changes in the generation resource assumptions represent capacity sourced from assumed generation expansion within the SERTP region. Diagram III.3 provides a breakdown, by resource type, of these generation expansion assumptions within the SERTP region.

Diagram III.3: Future Capacity Expansion Assumptions within the SERTP Region by Resource Type





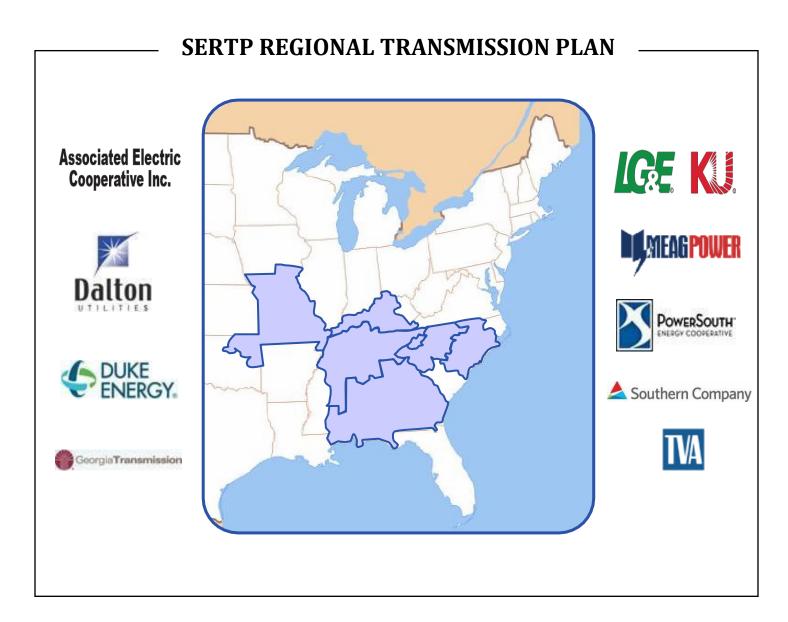
Generation assumptions within the SERTP region can also stem from long-term, firm point-to-point transmission service commitments. Additional information on long-term firm transmission service commitments considered in the 2024 SERTP process is available in Appendices 1 through 7 as well as on each SERTP sponsor's respective OASIS site.

#### **Interface Commitments**

In addition to the firm transmission delivery service commitments made by LSEs that source and sink within their NERC BAA, firm transmission delivery service commitments may exist that source and/or sink across two NERC BAAs. These commitments are called interface commitments. While interface commitments can stem from a number of drivers, many of these commitments are the result of LSEs opting to procure transmission capacity to receive deliveries from off-system resources to serve their loads. Other market participants may also utilize long-term, firm transmission delivery service to obtain delivery priority to access either committed or potential customers in other BAAs. The interfaces are also planned to maintain reliability margins to address uncertainties which may arise in real-time operations. Two types of reliability margins are 1) Transmission Reliability Margin ("TRM"), which is capacity preserved to provide reasonable assurance that the interconnected transmission network will be secure under the inherent uncertainty in real-time system conditions and 2) Capacity Benefit Margin ("CBM"), which is capacity preserved to enable LSEs access to generation from other interconnected systems to meet generation reliability requirements should times of emergency generation deficiencies arise.

Each SERTP sponsor plans the transmission system to accommodate all its long-term firm interface commitments including reliability margins. This planning, along with planning for other long-term firm commitments, has resulted in a highly integrated and robust network of ties within the SERTP region. Appendices 1 through 7 provide detail on the interface commitments modeled in the 2024 series SERTP regional power flow models. Additional information on the long-term firm transmission service interface commitments considered in the 2024 SERTP process is available on each SERTP sponsor's respective OASIS sites.

### IV. SERTP Regional Transmission Plan Summary


#### Regional Plan Summary

The regional transmission plan represents the culmination of each year's planning cycle assessment, providing a "snapshot" of the transmission capacity requirements to safely, reliably, and economically serve the load within the SERTP region based upon the current resource assumptions of LSEs and other transmission customers. As described in Sections II & III, the regional transmission plan is continually assessed and may be revised based upon changes to these input assumptions.

The 2024 SERTP regional transmission plan, found in its entirety in Section V, consists of around 350 transmission projects, totaling an estimated \$16.7 billion dollars, including: over 1630 miles of new transmission lines, over 2250 miles of transmission line uprates (including upgrades, reconductors, and rebuilds), and 38 transformer additions and/or replacements. This planned physical transmission capacity provides for a continued robust, reliable, and resilient transmission system that responds well under a wide range of operating uncertainties and supports routine maintenance and construction activities. Tables II.1 and II.2 in Section II provide additional cumulative breakdowns on the regional transmission plan, while Appendices 1 through 7 depict tabular breakdowns for each BAA.



### V. SERTP Regional Transmission Plan



November 27, 2024

#### TABLE OF CONTENTS<sup>1</sup>

| AECI Balancing Authority Transmission Projects               | . 24 |
|--------------------------------------------------------------|------|
| DUKE CAROLINAS Balancing Authority Transmission Projects     | . 26 |
| DUKE PROGRESS EAST Balancing Authority Transmission Projects | . 40 |
| DUKE PROGRESS WEST Balancing Authority Transmission Projects | . 49 |
| LG&E/KU Balancing Authority Transmission Projects            | . 50 |
| SOUTHERN Balancing Authority Transmission Projects           | . 54 |
| TVA Balancing Authority Transmission Projects                | 139  |

<sup>&</sup>lt;sup>1</sup> The projects described in this document represent the current ten-year transmission expansion plans. The transmission expansion plans are periodically reviewed and may be revised due to changes in assumptions. This document does not represent a commitment to build for projects listed in the future.



In-Service

2026

Year:

Project Name: REBUILD THE 24.48-MILE-LONG CROCKER SOUTH-LEBANON #2 161 KV LINE WITH 795

**ACSR RATED AT 100C** 

Description: Rebuild the 24.48-mile-long Crocker South-Lebanon #2 161 kV line with 795 ACSR rated

at 100C

Supporting Statement:

The Crocker South - Lebanon 161 kV line overloads under contingency

In-Service

2027

Year:

Project Name: REBUILD 31.58 MILE LONG MANSFIELD - GAINESVILLE #2 161 KV LINE WITH 795 ACSR

**RATED AT 100C** 

Description: Rebuild the 31.58 mile long Mansfield - Gainesville #2 161 kV line with 795 ACSR rated at

100C

Supporting

Statement:

The Mansfield - Gainesville 161 kV transmission line can overload under contingency

In-Service

Year:

Project Name: REBUILD THE 24.42 MILE-LONG-LINE FROM GAINESVILLE #2-BULL SHOALS 161 KV LINE

**795 ACSR AT 100C** 

Description: Rebuild the 24.42 mile-long-line from Gainesville #2-Bull Shoals 161 kV line 795 ACSR at

100C

2027

Supporting

The Gainesville - Bull Shoals 161 kV line overloads under contingency



In-Service

2028

Year:

Project Name:

REBUILD THE 26.49 MILE LONG MORGAN-BROOKLINE 161 KV LINE WITH 795 ACSR

**RATED AT 100C** 

Description:

Rebuild the 26.49 mile long Morgan-Brookline 161 kV line with 795 ACSR rated at 100C

Supporting

The Morgan - Brookline 161 kV line overloads under contingency



In-Service

2025

Year:

Project Name: ALLEN STEAM STATION TRANSFORMER REPLACEMENT AND SOUTH POINT SWITCHING

**STATION** 

Description: To facilitate the generation retirement at Allen Steam Station, both 230/100 kV

> transformers need to be replaced with larger 448MVA units. Due to age and need for physically larger equipment to facilitate the larger transformers, the 100 kV at Allen Steam is being relocated to a new South Point Switching Station about 1 mile west of

the site.

Supporting Statement: Allen Steam Station transformers overload under contingency

In-Service

2025

Year:

Project Name: DAN RIVER CTCC STATION TO MEADOW GREEN RET

Description: Extend the Dan River CTCC Station to Meadow Green Retail 100 kV Transmission Line to

help serve expected load growth in the region. This will require the rebuild of a portion

of the Dan River Steam to APCO (Fieldale) 138kV Tie Line

Supporting

Expected load growth in the region requires the Dan River CTCC to Meadow Green Retail

Statement: 100 kV Transmission Line to be extended.

In-Service

2025

Year: Project Name:

**HODGES TIE - CORONACA TIE 100 KV TRANSMISSION LINE** 

Description:

Rebuild approximately 9.2 miles of the Hodges Tie - Coronaca Tie 100 kV transmission

line with 795 ACSS/TW at 200°C

Supporting

The Hodes Tie - Coronaca Tie 100 kV transmission line can overload under contingencies



In-Service 2025

Year:

Project Name: LEE STEAM STATION - SHADY GROVE TIE 100 KV TRANSMISSION LINE (LEE CIRCUITS)

Description: Rebuild the entire Lee Steam Station - Shady Grove 100 kV Transmission Line (Lee

circuits) with 1158 ACSS/TW at 200°C

Supporting The Lee Steam Station - Shady Grove 100 kV Transmission Lines can overload under

Statement: contingency

In-Service 2025

Year:

Project Name: MCDOWELL TIE 230/100 KV BANK 2 REPLACEMENT

Description: Replace existing bank 2 with new larger 448 MVA autotransformer

Supporting Existing bank is approaching the end of its operatable life

Statement:

In-Service 2025

Year:

Project Name: N GREENVILLE TIE - TRANSFORMER REPLACEMENT

Description: Replace existing Bank 1 with new larger 448 - MVA 230/100/44kV autobank. Replace

existing 230 kV and 44 kV oil breakers with gas

Supporting Existing N Greenville Tie Bank 1 can overload under contingency



In-Service

2025

Year:

Project Name:

OAKBORO TIE - CUSTOMER DELIVERY 44KV TRANSMISSION LINE

Description: Rebuild 2.5 miles of the Oakboro Tie - Customer Delivery 44kV Line to double circuit

and establish a new 100 kV line out of Oakboro Tie with 556 ACSR rated at 120 °C

Supporting Large new customer cannot be reliably served by the existing 44 kV circuit. Rebuilding

Statement: the 44 kV to double circuit allows for one circuit to be operated at 100 kV to provide

sufficient service to the customer.

In-Service

2025

Year:

Project Name: SCE&G (SALUDA DAM) - NEWBERRY TIE 100 KV TRANSMISSION LINES

Description: Rebuild the SCE&G (Saluda Dam) - Newberry Tie 115 kV Line up to the change of

ownership with SCE&G with 1272 ACSR at 120°C

Supporting Support future solar generation in the area and address potential contingency loading

Statement: conditions on the SCE&G (Saluda Dam) - Newberry Tie 115 kV

In-Service

2025

Year:

Project Name: WILKES TIE 230 KV SUBSTATION

Description: Install a new 230/100 kV, 448 MVA transformer at Wilkes Tie.

Supporting Thermal overloads occur near North Wilkesboro Tie and additional voltage support is

Statement: needed in the area under contingency.



In-Service

2026

Year:

Project Name: **BOYD SWITCHING STATION** 

Description: Construct a new 230 kV switching station along the Marshall Steam Station - Longview

Tie 230 kV transmission line

Supporting Expected new customer load growth in the region will require the construction of a new

Statement: switching station to provide adequate support and reduce contingency loading on the

Marshall Steam Station - Longview Tie 230 kV Transmission Lines

In-Service

2026

Year: Project Name:

**BUSH RIVER TIE - LAURENS TIE 100 KV TRANSMISSION LINES** 

Description: Rebuild the full 29 miles of the Bush River Tie - Laurens Tie 100 kV double circuit line

with 1272 ACSR at 120°C

Supporting Support future solar generation in the area and address potential contingency loading

Statement: conditions on the Bush River Tie - Laurens Tie 100 kV Transmission Line

In-Service

2026

Year:

Project Name: CRETO TIE TO CORONACA TIE 100 KV TRANSMISSION LINE

Description: Rebuild and add a second circuit to 8.9 miles of the single circuit Creto Tie to Coronaca

Tie 100 KV transmission Line with 954 ACSR at 120°C.

Supporting

The Creto Tie - Coronaca Tie 100 kV transmission line can overload under contingency



In-Service

2026

Year:

Project Name: DIXON SCHOOL RD - CUSTOMER DELIVERY 230 KV TRANSMISSION LINE

Description: Construct a new 1.3 mile 230 kV line from Dixon School Rd to a customer delivery

station with 954 ACSR rated at 120 °C

Supporting

New 230 kV line is needed to support a new customer delivery.

Statement:

In-Service

2026

Year:

Project Name: HAAS CREEK SWITCHING STATION

Description: Construct a new 230kV switching station along the Orchard Tie - Longview Tie 230 kV

transmission line

Supporting Large new customer requires the addition of a switching station to support their load

Statement: growth.

In-Service

Year:

Project Name: LEE STEAM STATION - SHADY GROVE TIE 100 KV TRANSMISSION LINE (PIEDMONT

**CIRCUITS)** 

2026

Description: Rebuild the entire Lee Steam Station - Shady Grove 100 kV Transmission Line (Piedmont

circuits) with 1158 ACSS/TW at 200°C

Supporting The Lee Steam Station - Shady Grove 100 kV Transmission Lines can overload under

Statement: contingency



In-Service

2026

Year:

Project Name: LYLE CREEK SWITCHING STATION

Description: Construct a new 100 kV switching station along the Hickory Tie - Lookout Tie 100 kV

Transmission Lines.

Supporting Large new customer requires the addition of a switching station to support their load

Statement: growth.

In-Service

2026

Year:

Project Name: NORTH GREENSBORO TIE - GREENSBORO MAIN 100 KV TRANSMISSION LINES

Description: Rebuild both of the North Greensboro Tie - Greensboro Main 100 kV Transmission Lines

with 1158 ACSS/TW at 200°C

Supporting The North Greensboro - Greensboro Main 100 kV Transmission Lines can overload under

Statement: contingency

In-Service

2026

Year:

Project Name: OAKVALE TIE - EAST GREENVILLE TIE 100 KV TRANSMISSION LINE

Description: Rebuild 4.5 miles (East Greenville to Verdae Retail) of the Oakvale Tie - East Greenville

Tie 100 kV Double Circuit line with 1272 ACSR at 120°C

Supporting The Oakvale Tie - East Greenville Tie 100 kV Transmission Line can overload under

Statement: contingency



In-Service

2026

Year:

Project Name: WYLIE SWITCHING STATION - WOODLAWN TIE 100 KV TRANSMISSION LINE

Description: Reconductor 8 miles (Wylie Tie to Arrowood Retail) of the Wylie Tie - Woodlawn Tie

100 kV double circuit transmission line with bundled 477 ACSR at 120°C.

Supporting

The Wylie Tie - Woodlawn Tie 100 kV transmission line can overload under contingency

Statement:

In-Service

2027

2027

Year:

Project Name: HANDS MILL SWITCHING STATION

Description: Construct a new 230 kV switching station along the Newport Tie - Catawba Nuclear 230

kV transmission lines

Supporting Large new customer requires the addition of a switching station to support their load

Statement: growth.

In-Service

Year:

Project Name: LANCASTER MAIN - MONROE MAIN 100KV TRANSMISSION LINE

Description: Rebuild 23.8 miles of Lancaster Main - Monroe Main 100 kV double circuit transmission

line with 1158 ACSS/TW rated at 200°C

Supporting

Statement:

Lancaster Main - Monroe Main 100 kV transmission line can overload under contingency



In-Service

2027

Year:

Project Name: STATESVILLE TIE - MOORESVILLE TIE 44KV TRANSMISSION LINE

Description: Rebuild 7.9 miles (Statesville Tie - Perth Rd Retail Tap) of the Statesville Tie - Mooresville

Tie 44kV line with 954 ACSR rated at 120 °C as double circuit, establishing a new 100 kV

circuit out of Statesville Tie

Supporting Statement:

The existing Statesville Tie - Mooresville Tie 44kV Line can overload

In-Service

2029

Year:

Project Name: NEWPORT TIE - MORNING STAR TIE 230 KV TRANSMISSION LINE

Description: Add a second circuit to the Newport Tie - Morning Star Tie 230 kV Transmission Line by

relocated the existing 100 kV circuit on the structures to a new 100 kV corridor and

adding additional 954 ACSR conductors to complete the new circuit.

Supporting Existing Newport Tie - Morning Star Tie 230 kV Transmission Line can overload under

Statement: contingencies

2030

In-Service

Year:

Project Name:

NORTH GREENVILLE TIE TO PISGAH TIE 100 KV TRANSMISSION LINE

Description: Rebuild 11.5 miles (North Greenville Tie to Marietta Tie) of the North Greenville Tie -

Pisgah Tie 100 kV transmission line with 1272 ACSR at 120°C.

Supporting

The North Greenville Tie - Pisgah Tie 100 kV transmission can overload under

Statement:

contingencies



In-Service

2032

Year:

Project Name: MORNING STAR TIE EXPANSION

Description: Expand the 230 kV switchyard at Morning Star Tie to a full breaker and a half

configuration and replace all three existing autobanks with new 230/100/44 kV 448MVA

transformers.

Supporting The addition of a second Sandy Ridge circuit requires the expansion of the 230 kV at

Statement: Morning Star Tie. The existing banks at Morning Star can overload under contingencies

In-Service

2034

Year:

Project Name: DAN RIVER STEAM - NORTH GREENSBORO TIE 100 KV TRANSMISSION LINES

Description: Rebuild the entire Dan River Steam - North Greensboro 100 kV Transmission Lines (25.9

miles) with 1272 ACSR rated at 120 °C. Project listed as conceptual in the local

transmission plan. Need date may shift in future.

Supporting The Dan River Steam - North Greensboro Tie 100 kV Transmission Lines can overload

Statement: under contingency

2034

In-Service

Year:

Project Name: DAN RIVER STEAM - SADLER TIE 100 KV TRANSMISSION LINES (REIDSVILLE CIRCUITS)

Description: Rebuild the entire Dan River Steam - Sadler Tie 100 kV Transmission Lines (Reidsville

Circuits - 8.1 miles) with 1272 ACSR rated at 120 °C. Project listed as conceptual in the

local transmission plan. Need date may shift in future.

Supporting The Dan River Steam - Sadler Tie 100 kV Transmission Lines (Reidsville Circuits) can

Statement: overload under contingency



In-Service

2034

Year:

Project Name: DAN RIVER STEAM - SADLER TIE 100 KV TRANSMISSION LINES (WOLF CREEK CIRCUITS)

Description: Rebuild the entire Dan River Steam - Sadler Tie 100 kV Transmission Lines (Wolf Creek

Circuits - 8.2 miles) with 1272 ACSR rated at 120 °C

Supporting The Dan River Steam - Sadler Tie 100 kV Transmission Lines (Wolf Creek Circuits) can

Statement: overload under contingency

In-Service

2034

Year:

Project Name: HARRISBURG TIE - AMITY SWITCHING STATION 100 KV TRANSMISSION LINES

Description: Rebuild 6.45 miles (Harrisburg Tie to Structure 52.0) of the Harrisburg Tie - Amity

Switching Station 100 kV Transmission line with 1272 ACSR at 120°C

Supporting The Harrisburg Tie - Amity Switching Station 100 kV Transmission Lines can overload

Statement: under contingency

In-Service

2034

Year:

Project Name: HARRISBURG TIE - CONCORD MAIN 100 KV TRANSMISSION LINES

Description: Rebuild 5.6 miles (Concord Main to Customer) of the Harrisburg Tie - Concord Main 100

kV double circuit transmission line with 1272 ACSR at 120°C. Project listed as conceptual in the local transmission plan. Need date may shift in future.

Supporting The Harrisburg Tie - Concord Main 100 kV Transmission Lines can overload under

Statement: contingency



In-Service

2034

Year:

Project Name: LOOKOUT TIE - MARSHALL STEAM 44 KV TRANSMISSION LINE

Description: Rebuild the Lookout Tie - Marshall Steam 44 kV Transmission line as double circuit with

954 ACSR rated at 120 °C. Establish a 100 kV circuit served out of Lookout Tie. Project

listed as conceptual in the local transmission plan. Need date may shift in future

Supporting The Lookout Tie - Marshall Steam 44kV Transmission line can experience Thermal and

Statement: Voltage issues under periods of extreme weather conditions.

In-Service

2034

Year:

Project Name: MARSHALL STEAM STATION - BOYD SWITCHING STATION 230 KV TRANSMISSION LINE

Description: Rebuild the entire 15 miles of the Marshall Steam to Boyd Switching Station 230 kV Line

with bundled 1272 ACSR conductor rated at 120°C. Project listed as conceptual in the

local transmission plan. Need date may shift in future.

Supporting

Statement:

The Marshall Steam - Boyd Switching Station 230 kV T.L. can overload under contingency

In-Service

2034

Year:

Project Name: MCGUIRE NUCLEAR STATION - MARSHALL STEAM STATION 230 KV TRANSMISSION

**LINES** 

Description: Rebuild the entire McGuire Nuclear Station - Marshall Steam Station 230 kV

Transmission lines with 1533 ACSS/TW rated at 200°C. Project listed as conceptual in

the local transmission plan. Need date may shift in future.

Supporting

The McGuire Nuclear Station - Marshall Steam Station 230 kV Transmission lines can

Statement: overload under contingency



## SERTP TRANSMISSION PROJECTS DUKE CAROLINAS Balancing Authority Area

In-Service

2034

Year:

Project Name: ORCHARD TIE - HICKORY TIE 100 KV TRANSMISSION LINES

Description: Rebuild 4.4 miles (Orchard Tie - Newton Tie Tap) of the Orchard Tie to Hickory Tie 100

kV Transmission Line with 1272 ACSR conductor rated at 120 °C. Project listed as

conceptual in the local transmission plan. Need date may shift in future.

Supporting

Statement:

The Orchard Tie - Hickory Tie 100 kV T.L. can overload under contingency

In-Service

2034

Year:

Project Name: PARKWOOD TIE - CUSTOMER STATION 100 KV TRANSMISSION LINE

Description: Extend the Parkwood Tie - Customer Station 8.75 miles and network with East Durham

Tie. Conductor for the extension will be 1272 ACSR conductor rated at 120 °C. Project listed as conceptual in the local transmission plan. Need date may shift in future.

Supporting To help address thermal loading issues throughout the region around Parkwood Tie, the

Statement: Parkwood Tie - Customer Station will be extended and networked with East Durham Tie

In-Service

Year:

2034

Project Name: STAMEY TIE - LOOKOUT TIE 100 KV TRANSMISSION LINE

Description: Rebuild 5.4 miles (Lookout Tie - Customer Delivery) of the Stamey Tie - Lookout Tie 100

kV transmission line with bundled 954 ACSR rated at 120 °C

Supporting

The Stamey Tie - Lookout Tie 100 kV T.L. can overload under contingency



## SERTP TRANSMISSION PROJECTS DUKE CAROLINAS Balancing Authority Area

In-Service

2034

Year:

Project Name: STAMEY TIE - STATESVILLE TIE 100 KV TRANSMISSION LINE

Description: Rebuild the entire 6 miles of the Stamey Tie - Statesville Tie 100 kV Transmission line

with 1272 ACSR conductor rated at 120 °C. Project listed as conceptual in the local

transmission plan. Need date may shift in future.

Supporting Statement:

The Stamey Tie - Statesville Tie 100 kV T.L. can overload under contingency

In-Service

2034

Year:

Project Name: STONEWATER TIE - WESTFORK SWITCHING STATION 100 KV TRANSMISSION LINES

Description: Rebuild 3 miles (Wildcat Tie to Westfork Switching Station) of the Stonewater Tie -

Westford Switching Station 100 kV Transmission Line with 1272 ACSR at 120°C. Project listed as conceptual in the local transmission plan. Need date may shift in future.

Supporting The Stonewater Tie - Westfork Switching Station 100 kV transmission line can overload

Statement: under contingency

In-Service

Project Name:

2034

Year:

TIGER TIE - CAMPOBELLO TIE 100 KV TRANSMISSION LINE

Description: Rebuild the entire 11.8 miles of the Tiger Tie - Campobello Tie 100 kV transmission Line

with 1272 ACSR conductor rated at 120 °C. Project listed as conceptual in the local

transmission plan. Need date may shift in future.

Supporting

The Tiger Tie - Campobello Tie 100 kV T.L. can overload under contingency



# SERTP TRANSMISSION PROJECTS DUKE CAROLINAS Balancing Authority Area

In-Service 2034

Year:

Project Name: WINECOFF TIE - CONLEY SWITCHING STATION 100 KV TRANSMISSION LINE

Description: Rebuild 7.89 miles of the Winecoff Tie - Conely Switching Station 100 kV transmission

line with 1272 ACSR at 120°C

Supporting The Winecoff Tie - Conely Switching Station 100 kV transmission Lines can overload

Statement: under contingency



In-Service

2025

Year:

Project Name:

**ERWIN - FAYETTEVILLE 115 KV LINE, RECONDUCTOR TWO SECTIONS** 

Description:

This project consists of rebuilding the SREMC Wade – Beard – Slocomb Tap portions of

the Erwin - Fayetteville 115 kV Line using 795 ACSS/TW conductor or equivalent

(approximately 9 miles).

Supporting

Approved DEP upgrade through NCUC as part of the plan to reach goals for renewable

Statement: generation detailed in the Carolinas Carbon Plan.

In-Service

2025

Year:

FAYETTEVILLE – FAYETTEVILLE DUPONT 115 KV LINE, REBUILD 3.2 MILE SECTION, HOPE Project Name:

MILLS CHURCH ST - ROSLIN SOLAR

Description:

Reconductor the Hope Mills Church St.-Roslin Solar section (3.2 miles) of the Fayetteville

- Fay. DuPont SS 115 kV line with 795 ACSS/TW conductor.

Supporting Statement: Fayetteville – Fayetteville Dupont 115 KV Line overloads under contingency.

In-Service

2025

Year:

**Project Name:** MILBURNIE 230, UPGRADE EQUIPMENT AND REQUEST EMERGENCY RATING FOR

230/115 TRANSFORMERS

Description: Milburnie 230, Upgrade CT ratios and relay settings and request emergency ratings for

Milburnie 230/115 kV banks 1&2

Supporting

Multiple contingencies cause the Milburnie 230/115 transformers to overload.



In-Service

2025

Year:

Project Name: ROCKY MOUNT – BATTLEBORO 115 KV LINE, RECONDUCTOR

Description: Reconductor the entire Rocky Mount – VEPCO Battleboro 115 kV line, 8.54 miles, with 3-

795 MCM ACSS/TW conductor.

Supporting With generation in the PJM queue, the Rocky Mount – VEPCO Battleboro 115 kV line

Statement: overloads under contingency.

In-Service

2025

Year:

Project Name: SUMTER - SCE&G EASTOVER 115KV LINE, UPGRADE SWITCHES AND TERMINAL

**EQUIPMENT AT SUMTER 230 SUB** 

Description: Upgrade line switches, CT ratios, and relay settings at Sumter 230.

Supporting Various outages cause the Sumter-Sumter Gold Kist Tap and Sumter Kings Highway-

Statement: Shaw Field Tap section of the Sumter-Eastover 115 kV line to overload.

In-Service

2025

Year:

Project Name: WEATHERSPOON - MARION 115 KV LINE, UPGRADE

Description: Reconductor a 6.45 mile section of the Weatherspoon - Marion 115kV line from LREMC

Hog Swamp to Fairmont tap with 795 ACSS/TW conductor.

Supporting Approved DEP upgrade through NCUC as part of the plan to reach goals for renewable

Statement: generation detailed in the Carolinas Carbon Plan.



In-Service

2026

Year:

Project Name: CAMDEN - CAMDEN DUPONT 115KV LINE, RECONDUCTOR

Description: Rebuild 0.73 miles (entire line) of the Camden – Camden Dupont 115kV line with 795

ACSS/TW

Supporting Approved DEP upgrade through NCUC as part of the plan to reach goals for renewable

Statement: generation detailed in the Carolinas Carbon Plan.

In-Service

2026

Year:

Project Name: CAPE FEAR PLANT - WEST END 230 KV LINE, REBUILD

Description: This project consists of rebuilding the 1272 ACSR portions of the Cape Fear – West End

230 kV Line using 6-1590 MCM ACSR conductor (approximately 26.6 miles). Raise the 2515 ACSR sections to 212F maximum operating temperature (approximately 4.5 miles).

Upgrade switches and terminal equipment.

Supporting Various generator interconnection studies have shown the need to upgrade this line.

Statement: This upgrade is needed for future generation proposed for compliance with the Carbon

Plan goals.

In-Service

2026

Year:

Project Name: CASTLE HAYNE-FOLKSTONE 115KV LINE, REBUILD

Description: Rebuild approximately 25.91 miles of 115 kV line with 1272 MCM ACSR or equivalent.

Supporting

Statement:

The Castle Hayne 230 kV Sub-Folkstone 115 kV line overloads under contingency.



In-Service

2026

Year:

Project Name: **ERWIN - FAYETTEVILLE EAST 230 KV LINE, REBUILD** 

Description: Reconductor 23 miles of the Erwin - Fayetteville East 230 kV Line

Approved DEP upgrade through NCUC as part of the plan to reach goals for renewable Supporting

Statement: generation detailed in the Carolinas Carbon Plan.

In-Service

2026

Year: Project Name:

**FAYETTEVILLE - FAYETTEVILLE DUPONT 115 KV LINE, REBUILD 4.9 MILE SECTION,** 

**FAYETTEVILLE - HOPE MILLS CHURCH ST.** 

Description: This project consists of rebuilding the Fayetteville - Hope Mills Church St section of the

Fayetteville – Fayetteville Dupont 115 kV Line using 795 ACSS/TW conductor or

equivalent (approximately 4.9 miles).

Supporting Approved DEP upgrade through NCUC as part of the plan to reach goals for renewable

Statement: generation detailed in the Carolinas Carbon Plan.

In-Service

Year:

2026

**Project Name:** 

HILL CREST (CARTHAGE AREA) 230 KV SUBSTATION, CONSTRUCT AND LOOP-IN CAPE

FEAR-WEST END 230KV AND WEST END-SOUTHERN PINES 115KV FEEDER

Description: Construct a new Hill Crest 230/115 kV substation near the existing Carthage 115 kV

> substation. Loop in the existing Cape Fear-West End 230 kV line and West End-Southern Pines 115 kV feeder. The new Carthage 230–West End 115 kV line will be normally open

at Carthage 230kV.

Supporting

Statement:

Various contingencies cause overloads and low voltages in the area.



In-Service

2026

Year:

Project Name: ROBINSON - ROCKINGHAM 230 KV LINE (STR 235 - CHERAW TAP), RECONDUCTOR

Description: This project consists of reconductoring Str. 235 - Cheraw Tap of the Robinson –

Rockingham 230 kV Line using 6-1590 MCM ACSR conductor or equivalent

(approximately 0.73 miles) and upgrading one switch

Supporting This upgrade is an assigned network upgrade in the 2022 DISIS Phase 3 Interconnection

Statement: Study

In-Service

Project Name:

2026

Year:

**ROBINSON - ROCKINGHAM 230 KV LINE, RECONDUCTOR 19.09 MILES** 

Description: This project consists of rebuilding portions of the Robinson – Rockingham 230 kV Line

using 6-1590 MCM ACSR conductor or equivalent (approximately 19 miles).

Supporting Approved DEP upgrade through NCUC as part of the plan to reach goals for renewable

Statement: generation detailed in the Carolinas Carbon Plan.

In-Service

Project Name:

2026

Year:

SUMTER – SCEG EASTOVER 115 KV LINE (KINGS HWY – SHAW FIELD – EASTOVER),

**RECONDUCTOR** 

Description: Reconductor Sumter Kings Hwy - Shaw Field Tap and Shaw Field Tap - DESC Eastover

sections of Sumter-Eastover 115 kV line to 1272 ACSR, 7.49 miles, and raise Sumter Gold

Kist Tap - Str #427 to 212 F, 2.16 miles

Supporting Various contingencies cause the Shaw Field Tap-Eastover section of the Sumter-Eastover

Statement: 115 kV line to overload.



In-Service

2027

Year:

Project Name: CAMDEN JUNCTION - DPC WATEREE 115 KV LINE, REBUILD

Description: This project consists of rebuilding the Camden Junction – DPC Wateree 115 kV Line using

795 ACSS/TW conductor or equivalent (approximately 5.27 miles).

Supporting Approved DEP upgrade through NCUC as part of the plan to reach goals for renewable

Statement: generation detailed in the Carolinas Carbon Plan.

In-Service

2027

Year:

Project Name: HOLLY RIDGE NORTH 115 KV SWITCHING STATION, CONSTRUCT

Description: Construct a new 115kV Switching Station northeast of Holly Ridge, NC where the Castle

Hayne-Folkstone 115 kV and Folkstone-Jacksonville City 115kV lines come together. Construct a new 115 kV feeder from the new switching station to JOEMC Folkstone POD.

Supporting

Statement:

Multiple contingencies result in low voltages on the Castle Hayne-Folkstone 115 kV line.

In-Service

2027

Year:

Project Name: ROBINSON PLANT - ROCKINGHAM 115 KV LINE, REBUILD 3 SECTIONS

Description: This project consists of rebuilding the Sneedsboro Solar - Cordova - Rockingham portions

of the Robinson – Rockingham 115 kV Line using 795 ACSS/TW conductor or equivalent

(approximately 17 miles).

Supporting

Approved DEP upgrade through NCUC as part of the plan to reach goals for renewable

Statement: generation detailed in the Carolinas Carbon Plan.



In-Service

2027

Year:

Project Name: WEATHERSPOON – LOF 115 KV LINE (MAXTON-PEMBROKE), RECONDUCTOR

Description: Reconductor 9 miles (near Pembroke - near Maxton) with 3-795 MCM ACSS/TW/HS.

Install two new 2000A switches.

Supporting The Maxton-Pembroke section of the Weatherspoon-LOF 115 kV Line overload under

Statement: contingency.

In-Service

2028

2028

Year:

Project Name: DURHAM – RTP 230 KV LINE, RECONDUCTOR ONE SECTION

Description: Reconductor approximately 4.6 miles, from Durham to Brier Creek, of 230 kV line with

6-1590 ACSR conductor.

Supporting

This upgrade is needed to serve a new industrial customer load.

Statement:

In-Service

Year:

Project Name: WEATHERSPOON - MARION 115 KV LINE, RAISE MARION - DILLON SECTION

Description: Raise the Marion - Dillon section, 14.6 miles, of the Weatherspoon - Marion 115 kV Line,

to achieve 119 MVA summer rating

Supporting This upgrade is an assigned network upgrade in the 2022 DISIS Phase 3 Interconnection

Statement: Study.



In-Service

2029

Year:

Project Name:

ASHEBORO - SILER CITY 115 KV LINE, RECONDUCTOR ASHEBORO - SILER CITY 115 KV

**SUB** 

Description:

Reconductor 22.66 mi of the Asheboro – Siler City 115 kV Line, from Asheboro 230 kV

Sub to Siler City 115 kV Sub

Supporting

This upgrade is needed for the addition of new economic development load in Chatham

Statement: County, NC

In-Service

2029

Year:

Project Name:

**BRUSH CREEK 230 KV SUB, ADD CAPACITOR BANK** 

Description:

Add Capacitor Bank to support voltage at Brush Creek 230 kV Sub

Supporting

This upgrade is needed for the addition of new economic development load in Chatham

Statement:

County, NC

In-Service

2032

Year:

Project Name:

FALLS - FRANKLINTON (FRANKLINTON - FRANKLINTON NOVO 115 KV FEEDER),

**CONSTRUCT** 

Description:

Construct new line from Franklinton – Franklinton Novo 115 kV feeder. Project listed as

conceptual in the local transmission plan. Need date may shift in future.

Supporting

Multiple contingencies cause low voltages at buses on the Franklinton-Spring Hope SS

Statement:

115 kV line.



In-Service 2032

Year:

Project Name: SUMTER - SCEG EASTOVER 115KV LINE, RECONDUCTOR THE SUMTER GOLD KIST TAP -

**SUMTER KINGS HWY SECTION** 

Description: Sumter - Eastover 115kV line, Reconductor the 397.5 ACSR portion (5.82 miles) of

Sumter Gold Kist Tap - Sumter Kings Hwy section

Supporting Multiple contingencies cause the Sumter Gold Kist Tap – Sumter Kings Hwy section of

Statement: Sumter – Eastover 115kV line to overload.

In-Service 2034

Year:

Project Name: ROCKINGHAM – WEST END 230 KV WEST LINE, RECONDUCTOR

Description: Reconductor the Rockingham-Wadesboro Tap section (7.96 miles) of the Rockingham –

West End 230 kV West line. Project listed as conceptual in the local transmission plan.

Need date may shift in future.

Supporting Various outages cause the Rockingham-Wadesboro Tap section of the Rockingham -

Statement: West End 230 kV West line to overload.



In-Service

2025

2026

Year:

Project Name:

**CRAGGY-ENKA 230 KV TRANSMISSION LINE** 

Description:

Construct approximately 10.0 miles of new 230 kV transmission line from the Craggy 230 kV substation to the Enka 230 kV substation with 3-1590 MCM ACSR or equivalent.

Supporting

The Enka-West Asheville 115 kV line overloads under contingency.

Statement:

In-Service

Year:

Project Name:

ASHEVILLE PLANT - OTEEN WEST 115 KV TRANSMISSION LINE, ARDEN TAP

Description:

This project consists of constructing approximately 2 miles of 1272 MCM ACSR tap line, double circuited with the East line, from structure #2 on the Asheville Plant-Oteen 115kV West line to Arden 115 kV Substation on the Asheville Plant-Oteen 115kV East Line.

Supporting

Statement:

Various contingencies cause low voltages in the area.



In-Service

2025

Year:

Project Name: BLUE LICK TO CEDAR GROVE TAP 161KV TRANSMISSION LINE

Description: Replace 0.1 miles of 795MCM 61XAA, 4.6 miles of 500MCM 19XCU conductor, and

795MCM 61XAA line risers and jumper in the Blue Lick to Cedar Grove 161kV line with

795MCM 26X7 ACSR or better.

Supporting Statement:

The Blue Lick to Cedar Grove Tap 161kV transmission line overloads.

In-Service

2025

Year:

Project Name: MIDDLETOWN TO BUCKNER 345KV TRANSMISSION LINE

Description: Replace the 345kV 2000A breakers associated with the Middletown to Buckner 345kV

line with 3000A breakers.

Supporting

The Middletown to Buckner 345kV line overloads under contingency.

Statement:

In-Service 2026

Year:

Project Name: PINEVILLE SW TO ARTEMUS 161KV TRANSMISSION LINE

Description: Replace the 600 amp switches (149-814L & 149-814B) at Pineville Switch associated

with Pineville Sw-Artemus 161kV line and breaker 149-814 with 1200 amp switches.

Supporting

Statement:

The Pineville Sw to Artemus 161kV line overloads under contingency.



In-Service

2028

Year:

Project Name: BULLITT CO TO CEDAR GROVE TAP 161KV TRANSMISSION LINE

Description: Replace 1.6 miles of 795MCM 61XAA, on the Bullitt Co to Cedar Grove 161kV line with

795MCM 26X7 ACSR or better.

Supporting

The Bullitt Co to Cedar Grove Tap 161kV transmission line overloads.

Statement:

In-Service

2033

Year:

Project Name: ARTEMUS TAP TO FARLEY 161KV TRANSMISSION LINE

Description: Increase the Maximum Operating Temperature of 12.77 miles of 556.5 MCM 26x7 ACSR

in the Artemus tap to Farley 161 kV line from 155F to 170F.

Supporting Statement:

The Artemus Tap to Farley 161kV line overloads under contingency.

In-Service 2033

Year:

Project Name: NORTHSIDE TO CLIFTY TAP 138KV TRANSMISSION LINE

Description: Increase the Maximum Operating Temperature of the 336.4 MCM 26x7 ACSR of the

Northside to Clifty Tap 138V from 176F to 212F.

Supporting

The Northside to Clifty Tap 138kV line overloads under contingency.



In-Service

2034

Year:

Project Name:

ARETMUS TAP TO PINEVILLE SW 161KV TRANSMISSION LINE

Description:

Increase the Maximum Operating Temperature of 7.53 miles of 556.5 ACSR conductor in

the Artemus tap to Pineville Sw 161 kV line from 176F to 212F.

Supporting

The Artemus Tap to Pineville Sw 161kV line overloads under contingency.

Statement:

In-Service

Year:

2034

Project Name:

JEFFERSONTOWN TO WATTERSON 138KV TRANSMISSION LINE

Description:

Replace 138 kV terminal equipment rated less than or equal to 1192 Amps (285 MVA) summer emergency rating associated with the Jefferson to Watterson 138 kV line with equipment capable of a minimum of 1451 Amps (347 MVA) summer emergency rating.

Supporting

The Jeffersontown to Watterson 138kV line overloads under contingency.

Statement:

In-Service

Year:

Project Name:

MIDDLETOWN TO MIDDLETOWN R 138KV TRANSMISSION LINE

Description:

Replace 138kV terminal equipment rated less than or equal to 1083 Amps (259 MVA) summer emergency rating associated with the Middletown to Middletown R 138kV line with equipment capable of a minimum of 1200 Amps (287 MVA) summer emergency

rating.

2034

Supporting

The Middletown to Middletown R 138kV line overloads under contingency.



In-Service 2034

Year:

Project Name: MIDDLETOWN TO TRIMBLE CO 345KV TRANSMISSION LINE

Description: Replace the 345 kV 2000A breakers and terminal equipment at Middletown and Trimble

Co associated with the Middletown to Trimble Co 345 kV line (circuit 4541) with

equipment capable of at least 2293A (1370 MVA) Summer Emergency.

Supporting Statement:

The Middletown to Trimble County 345kV line overloads under contingency.



In-Service

2025

Year:

Project Name: ABBEVILLE TS - GEORGE DAM 115 KV TRANSMISSION LINE

Description: Reconductor approximately 9.5 miles of 397 ACSR at 100 °C of the Abbeville TS to

George Dam 115 kV TL to 397 ACSS at 200° C

Supporting

Provides additional operational and maintenance flexibility, which increases reliability.

Statement:

In-Service

Year:

2025

Project Name: ADAMSVILLE - JACK MCDONOUGH 230KV LINE REBUILD

Description: Rebuild the entire Adamsville - Jack McDonough 230kV line.

Supporting The project provides necessary operational flexibility and resolves an overload on the

Statement: Adamsville - Jack McDonough 230kV line under contingency.

In-Service 2025

Year:

Project Name: ANTHONY SHOALS STATCOM SYSTEM

Description: Install a STATCOM at the Anthony Shoals substation.

Supporting This project address increasing generation output at Russell Dam (SEPA).



In-Service

2025

Year:

Project Name: BASSETT CREEK – OCTAGON 115 KV TRANSMISSION LINE

Description: Reconductor 0.89 miles of 397 ACSR 100°C to 795 ACSR 100°C from Bassett Creek TS –

Fulton TS. Upgrade approximately 32 miles of 397.5 ACSR from Bassett Creek to

Octagon 115 kV transmission line from 75°C to 125°C.

Supporting Statement:

The Bassett Creek to Thomasville 115 kV transmission line overloads under contingency.

In-Service

2025

Year:

Project Name: CAPITOL HEIGHTS – CARTER HILL RD 115 KV TRANSMISSION LINE

Description: Reconductor approximately 2.5 miles of 556 AAC at 75°C from Capitol Heights – Carter

Hill Rd to 795 ACSR at 100°C

Supporting The Capitol Heights - Carter Hill Road 115 kV transmission line overloads under

Statement: contingency.

In-Service

2025

Year:

Project Name: CASS PINE- HILL VIEW 230 KV LINE- CC IMPROVEMENTS

Description: Build a new 230kV line between new Cass Pine and Hill View 230kV substations.

Supporting The transmission network improvements are required to serve load growth in

Statement: Cartersville area.



In-Service

2025

Year:

Project Name: **DEPTFORD - MAGNOLIA 115KV RECONDUCTOR** 

Description: Reconductor approximately 5 miles of the Deptford - Magnolia 115kV line.

Supporting The Deptford - Magnolia 115kV line overloads under contingency.

Statement:

In-Service

2025

Year:

Project Name:

**ECHECONNEE - WELLSTON 115KV REBUILD** 

Description: Rebuild approximately 1.2 miles of the Echeconnee - Wellston 115kV line.

Supporting The Echeconnee - Wellston 115kV line overloads under contingency.

Statement:

In-Service

Year:

2025

2025

Project Name: GRID - BREMEN - CROOKED CREEK 115KV PROJECT

Description: Rebuild approximately 14 miles of the Bremen - Crooked Creek 115kV line.

Supporting The Bremen - Crooked Creek 115kV line overloads under contingency.

Statement:

In-Service

Year:

Project Name: GTC: ANTHONY SHOALS - WASHINGTON 115KV LINE REBUILD

Description: Rebuild approximately 21 miles of the Anthony Shoals – Washington 115kV line.

Supporting The Anthony Shoals – Washington 115kV line overloads under contingency.



In-Service

2025

2025

Year:

Project Name: GTC: BANKS CROSSING - POND FORK 115 KV

Description: GTC will build a new line 115kV transmission line in the area.

Supporting

The Ridgeway Jct. - East Maysville Jct. line section overloads under contingency.

Statement:

In-Service

Year:

Project Name: GTC: BONAIRE PRI-ECHECONNEE 115KV (BONAIRE-RUSSELL PKWY) REBUILD

Description: Rebuild approximately 2.3 miles of the Bonaire Primary - Echeconnee 115kV line.

Supporting

The Bonaire Primary - Echeconnee 115kV line overloads under contingency.

Statement:

In-Service 2025

Year:

Project Name: GTC: CAMDEN INDUSTRIAL PARK (GPC)

Description: This project will loop in GPC's existing Colerain to Thalman 230kV line into GTC's new

Camden Industrial Park station. GPC's Kingsland termination at GTC's Kinlaw sub will be

relocated to a new 115kV bay position.

Supporting The transmission network improvements are required to serve load growth in the

Statement: Brunswick area.



In-Service 2025

Year:

Project Name: GTC: CAMDEN INDUSTRIAL PARK 230/115KV NEW SUBSTATION

Description: GTC will construct Camden Industrial Park, a new 230/115kV substation. Also, this

project will construct a new 115kV line between Kinlaw and Camden Industrial Park.

Supporting The transmission network improvements are required to serve load growth in the

Statement: Brunswick area.

In-Service 2025

Year:

Project Name: GTC: EATONTON PRIMARY - LICK CREEK 115KV LINE SWITCH REPLACEMENT

Description: Replace RLB line switch on the Eatonton - Lake Oconee 115kV line with motor operator

and SCADA controls.

Supporting Project needed to support the conversion of the 46kV North Eatonton substation to

Statement: 115kV.

In-Service 2025

Year:

Project Name: GTC: HEARD COUNTY - TENASKA 500KV (SECOND LINE)

Description: GTC: Build a second Heard County - Tenaska 500kV line, 0.8 miles. Add a 500kV ring bus

breaker at Heard County. GPC: Add a 500kV ring - bus breaker at Tenaska.

Supporting This project resolves multiple overloads and improves system reliability.



In-Service

2025

Year:

Project Name: GTC: THALMANN AND COLERAIN 230 KV LINE RELAY PANEL UPGRADES

Description: Relay protection modifications at GPC's Thalmann and Colerain substations to match

relay scheme used at GTC's new Camden Industrial Park 230/115kV substation.

Supporting The transmission network improvements are required to serve load growth in the

Statement: Brunswick area.

In-Service

2025

Year: Project Name:

**GULFPORT LANDON – COOPERATIVE ENERGY LANDON TAP 115 KV TRANSMISSION** 

**LINE REBUILD** 

Description: Rebuild approximately 5.5 mile, 115 kV transmission line between Gulfport Landon

substation and Cooperative Energy's Landon Tap with 1351 ACSR at 100°C.

Supporting The Gulfport Landon - Cooperative Energy's Landon Tap 115 kV overloads under

Statement: contingency.

In-Service

2025

Year:

Project Name: INSTALLATION OF POWER FLOW CONTROLLERS AT EATONTON PRIMARY

Description: Installation of power flow controllers inside the Eatonton Primary substation on the

Branch - Oasis 230kV and Eatonton Primary - Oasis 230kV lines.

Supporting This project addresses multiple thermal constraints in the area that occur under

Statement: contingency.



In-Service 2025

Year: Project Name:

JEFFERSON STREET#3 - NORTHWEST (WHITE) 115KV REBUILD

Description: Rebuild approximately 1.2 miles of the Jefferson Street #3 - Northwest 115kV White line.

Supporting

The Jefferson Street #3 - Northwest 115kV White line overloads under contingency.

Statement:

In-Service

Project Name:

Year:

2025

**JESUP - LUDOWICI 115KV LINE REBUILD** 

Rebuild approximately 7.5 miles of the Jesup - North Jesup - Rayonier section of the Description:

Jesup - Ludowici 115kV line.

Supporting

Statement:

The Jesup - Ludowici 115kV line overloads under contingency.

In-Service 2025

Year:

**LITTLE OGEECHEE 115KV: RELAY MODERNIZATION** Project Name:

Description: Install additional 115kV bus current differential protection scheme for 115kV busses at

Little Ogeechee.

Supporting The project addresses stability issues on the transmission network caused by a multiple

Statement: contingency events.



In-Service

2025

Year:

Project Name: MEAG: ALCOVY ROAD - SKC 115KV RECONDUCTOR

Description: MEAG will reconductor approximately 0.53 miles of the Alcovy Road - SKC 115kV line.

Supporting

The Alcovy Road - SKC 115kV transmission line overloads under contingency.

Statement:

In-Service

Year:

Project Name: MEAG: AULTMAN ROAD - BONAIRE PRIMARY 115KV REBUILD

Description: MEAG: Rebuild the 1.99 miles of Sleepy Hollow - Peach Blossom 115 kV line section of

the Aultman Road - Bonaire Primary 115kV line. GTC: Replace the jumpers at Sleepy

Hollow.

2025

Supporting Statement:

The Aultman Road - Bonaire Primary 115kV line overloads under contingency.

In-Service

2025

Year:

Project Name: MITCHELL - NORTH TIFTON 230KV REBUILD

Description: Rebuild approximately 35.21 miles of the Mitchell - North Tifton 230kV line.

Supporting

The Mitchell - North Tifton 230kV line overloads under contingency.



In-Service

2025

Year:

Project Name: NORCROSS 230KV BUS 1-3 SERIES BUS TIE BREAKER INSTALLATION

Description: Install a bus tie breaker in series with the existing bus tie breaker at Norcross substation.

Supporting The Norcross 230/115kV auto transformer and the Norcross #3 - Northwoods 115kV line

Statement: overload under contingency.

In-Service

Year:

2025

2025

Project Name: NORTH SELMA – SELMA #2 115 KV TRANSMISSION LINE

Description: Rebuild approximately 17 miles of 397 ACSR at 100 °C of North Selma Tap – Vida TS 115

kV TL to 795 ACSS at 200° C

Supporting Provides additional operational and maintenance flexibility which then increases

Statement: reliability.

In-Service

Year:

Project Name: PINE GROVE PRIMARY 115KV DUAL STAGE CAPACITOR BANK

Description: Install a Capacitor bank at Pine Grove Primary.

Supporting Project addresses voltage issues in the area due to a contingency.



In-Service

2025

Year:

Project Name: PROJECT CHRONOS TRANSMISSION SERVICE

Description: New station and loop it into a 230kV line to serve a customer choice project in the

Cartersville area.

Supporting The transmission network upgrades under this project are required to reliably serve load

Statement: growth in the Cartersville area.

In-Service

2025

Year:

Project Name: PS: ELSANOR-MIFLIN 115KV SECOND LINE

Description: Construct approximately 12 miles of new 115kV transmission line from Elsanor to Miflin

with 795 ACSR/AW at 100°C.

Supporting

The existing Elsanor-Miflin 115kV transmission line overloads under contingency.

Statement:

In-Service

Year:

Project Name: PS: EREC 115KV CONVERSION

2025

Description: This project will convert 21.36 miles of 46kV transmission to 115kV operation. Three

46kV distribution delivery points will also be upgraded to 115kV service as part of the

project.

Supporting

To support additional load growth in the Santa Rosa County, FL area.



In-Service

2025

Year:

Project Name: PS: GRACEVILLE - HOLMES CREEK 115KV TRANSMISSION LINE

Description: Construct approximately 1.08 miles of new 115 kV transmission line from PowerSouth's

Graceville Switching Station to FPL's Homes Creek Station using 795 ACSR conductor at

100°C design operating temperature.

Supporting Statement:

Improves voltage support for delivery points on PowerSouth system in the area.

In-Service

2025

Year:

Project Name: SAVANNAH AREA TRANSMISSION NETWORK UPGRADES

Description: Construct a new 230kV customer substation. Construct a new Newton Rd 230kV

substation and loop through the Little Ogeechee - Meldrim Black and White 230kV lines. Build two new 230kV lines connecting from customer station to Newton Rd (12 miles) and from customer station to Meldrim (10 miles). At Meldrim, add a breaker to accommodate for the new customer line. Install a 115/25kV bank at Interstate Centre

and build a new 115kV line from Interstate Centre to customer station (2.3 miles) for

bridge power.

Supporting

The network upgrades under this project are required to reliably serve load in the

Statement: Savannah area.

In-Service

Year:

Project Name: SILVERHILL TS 3RD AUTOBANK

2025

Description: Add 3rd 230/115 kV Autobank at Silverhill TS during infrastructure project.

Supporting

The Silverhill 230/115 kV autobank overloads under contingency.



In-Service

2025

Year:

Project Name:

**VILLA RICA LOW SIDE BREAKER** 

Description:

Replace a low side breaker at Villa Rica.

Supporting

The breaker overloads under a contingency.

Statement:

In-Service

2025

Year:

icai.

WEBB - BLAKELY (GPC) 115 KV TRANSMISSION LINE

Project Name: Description:

Reconductor approximately 10.5 miles of 397 ACSS at 160 °C of the Webb to Blakely

(GPC) 115kV TL to 795 ACSS at 200° C.

Supporting

Statement:

The Webb - Blakely 115 kV transmission line overloads under contingency.

In-Service

2025

Year:

Project Name:

**WEBB TS STATCOM** 

Description:

Installation of a +/- 150 Mvar STATCOM at Webb TS (230kV)

Supporting

Statement:

Provides reactive and stability support under contingency for the area.



In-Service

2026

Year:

Project Name:

ADAMSVILLE - BUZZARD ROOST 230KV REBUILD AND JUMPER UPGRADE

Description:

Rebuild approximately 8.1 miles of the Adamsville - Buzzard Roost 230kV line. Upgrade

limiting elements at substations along the line.

Supporting

The Adamsville - Buzzard Roost 230kV line overloads under contingency.

Statement:

In-Service

Year:

Project Name:

**BIG OGEECHEE 500/230KV NEW SUBSTATION (CC NETWORK IMPROVEMENTS)** 

Description:

Construct a new 500/230kV substation near Little Ogeechee substation, loop in the

nearby 500kV and 230kV lines, and construct a new 230kV line to Little Ogeechee

substation.

2026

Supporting

The 500/230kV West McIntosh auto transformers exceed their ratings under

Statement:

contingency.

In-Service

2026

Year:

Project Name:

**BLANKETS CREEK – WOODSTOCK 115KV LINE REBUILD** 

Description:

Rebuild the entire Blankets Creek - Woodstock 115kV line with higher capability

conductors.

Supporting

The Blankets Creek – Woodstock 115kV transmission line overloads under contingency.



In-Service

2026

Year:

Project Name:

**BOULEVARD - DEPTFORD 115KV RECONDUCTOR** 

Description:

Reconductor the entire Boulevard - Deptford 115kV line. Replace limiting element at

substation along the line.

Supporting

The Boulevard-Deptford 115kV line overloads under contingency.

Statement:

In-Service

2026

Year:

Project Name:

CASS PINE 230/25 NEW SUB - QCELLS - CC IMPROVEMENTS

Description:

Build a new 230/25kV ring bus networked substation named Cass Pine that will

interconnect between new Great Valley and Hill View 230kV substations.

Supporting

The transmission network improvements are required to serve load growth in

Statement:

Cartersville area.

In-Service

2026

Year:

Project Name: DRESDEN LINE PROTECTIVE RELAYING

Description:

On the Ohara - Wansley 500kV line, replace protective relaying equipment.

Supporting

The Ohara - Wansley 500kV line will be split by the new Dresden - Talbot Co 500kV line

Statement:

and the relay panels needs to be replaced to allow for the new Dresden substation.



In-Service

2026

Year:

Project Name:

DU: EAST DALTON - OOSTANAULA 115KV REBUILD

Description:

Rebuild the portion of East Dalton - Oostanaula and Dalton - East Dalton 115kV double

circuit lines between East Dalton substation and the Dalton substation frame.

Supporting

The East Dalton - Oostanaula 115KV line overloads under contingency.

Statement:

In-Service

Year:

Project Name:

**EAST POINT RELAY MODERNIZATION** 

Description:

Upgrade protection scheme at the East Point station.

Supporting

The project addresses stability issues in the transmission network caused by multiple

Statement:

contingencies.

In-Service

2026

2026

Year:

Project Name:

**FAYETTEVILLE AREA TRANSMISSION NEEDS** 

Description:

To serve load growth, a new 500/230kV station will be built with two 500/230kV auto

transformers. Two new 230kV lines will be built from the new 500/230kV station to the

high side of customer substations.

Supporting

The new 500/230kV substation and the new 230kV lines are needed to reliably serve

Statement:

load in the Fayetteville area.



In-Service

2026

2026

Year:

Project Name: FENWICK STREET - SAND BAR FERRY 115KV (RECONDUCTOR)

Description: Reconductor approximately 2.72 miles of the Fenwick Street - Sand Bar Ferry 115kV line.

Supporting

The Fenwick Street - Sand Bar Ferry 115kV line overloads under contingency.

Statement:

In-Service

Year:

Project Name: FULLER ROAD - COLUMBUS FIRST AVE 115 KV TL RECONDUCTOR

Description: Reconductor approximately 3 miles of 397 ACSR 115 kV TL at 100°C to 397 ACSS 26/7 at

200°C from Columbus First Ave to Phenix Lumber

Supporting The Fuller Road - Columbus First Avenue 115 kV transmission line overloads under

Statement: contingency.

In-Service 2026

Year:

Project Name: GARRETT ROAD SWITCHING STATION - TRAE LANE NETWORK UPGRADES

Description: Build the new Garrett Road 230kV switching station splitting the Villa Rica - West

Marietta 230kV line. Build a new 230kV line (8.6 miles) from the Trae Lane substation to

the Garrett Road switching substation.

Supporting The transmission network improvements are required to serve load growth in Douglas

Statement: County.



In-Service

2026

Year:

Project Name: GOAT ROCK - NORTH OPELIKA 230 KV TRANSMISSION LINE UPGRADE

Description: Upgrade the approximately 17.2 mile section of line from North Opelika to Goat Rock to

operate at 100°C

Supporting

The Goat Rock - North Opelika 230 kV transmission line overloads under contingency.

Statement:

In-Service

2026

Year:

Project Name: GOAT ROCK 230KV SWITCH & JUMPER REPLACEMENT

Description: Upgrade limiting elements at Goat Rock substation on the Goat Rock - North Opelika

230kV line.

Supporting Statement:

The Goat Rock - North Opelika 230kV transmission line overloads under contingency.

In-Service

2026

Year:

Project Name: GOAT ROCK 230KV SWITCH, JUMPER, & LINE TRAP REPLACEMENT

Description: Replace limiting elements at Goat Rock 230kV substation.

Supporting

The Goat Rock - North Opelika 230kV line overloads under contingency.



In-Service

2026

Year:

Project Name: GORDON-N DUBLIN 115KV (GORDON-ENGL MCI J) REBUILD

Description: Rebuild approximately 5.9 miles of the Gordon - North Dublin 115kV line.

Supporting

The Gordon - North Dublin 115kV line overloads under contingency.

Statement:

In-Service

Year:

Project Name: GRADY 230/115KV NEW BREAKER AND RELAY MODERNIZATION

Description: Upgrade protection scheme, install a breaker and associated switches at Grady

substation.

2026

2026

Supporting The project addresses stability issues in the transmission network caused by multiple

Statement: contingencies. It also addresses thermal overload on the Grady - Morrow 115kV White

line under contingency.

In-Service

Year:

Project Name: GRADY-WEST END 115KV LINE RECONDUCTOR

Description: Reconductor the entire 2.6 mile Grady - West End 115kV line.

Supporting The Grady - West End 115kV line overloads under contingency.



In-Service

2026

2026

Year:

Project Name:

**GRID - GAINESVILLE #2 EQUIPMENT REPLACEMENT** 

Description:

Replace 230/115kV auto transformers at Gainesville #2.

Supporting

The auto transformers at Gainesville #2 overload under contingency.

Statement:

In-Service

Year:

Project Name:

GTC: BARNESVILLE PRIMARY - BARNESVILLE #1 115KV RECONDUCTOR

Description:

Rebuild the Barnesville Primary - Barnesville #1 segment on the Barnesville Primary -

Lamar County Industrial 115kV line.

Supporting

Statement:

Increased capacity on the line is required due to generation changes.

In-Service

2026

Year:

Project Name:

**GTC: DRESDEN 500KV BUS EXPANSION** 

Description:

Expand the Dresden 500kV bus to bring additional 500kV lines into the station.

Supporting

Statement:

This project will resolve multiple thermal constraints by eliminating a contingency.



In-Service

2026

Year:

Project Name: GTC: GORDON - SANDERSVILLE #1 115KV LINE REBUILD

Description: Rebuild approximately 1.87 miles of the Gordon - Sandersville #1 115kV line.

Supporting The Gordon - Sandersville #1 115kV transmission line overloads for base case conditions.

Statement:

In-Service

Year:

2026

Project Name: GTC: LAGRANGE - NORTH OPELIKA 230KV

Description: Build a new 230kV line from Lagrange to North Opelika (APC).

Supporting This project resolves multiple overloads and improves system reliability

Statement:

In-Service 2026

Year:

Project Name: GTC: LIZARD LOPE - WESTOVER 115KV NEW LINE

Description: Construct two new 115kV stations, Lizard Lope and Westover, and build a new 115kV

line (approximately 19.8 miles) from Lizard Lope to Gillionville Substation.

Supporting

Statement:

The Dawson Primary - Palmyra 115kV line overloads under contingency.



In-Service

2026

Year:

Project Name: GTC: MORNING HORNET 2ND 230/115KV BANK & THUMBS UP 115KV TRANSMISSION

LINE

Description: Add a second 230/115kV auto transformer at Morning Hornet substation. Also, build a

new 115kV line from Morning Hornet to Thumbs Up, approximately 2.4 miles.

Supporting The East Social Circle - Stanton Springs 115kV and Morning Hornet - Thumbs Up 115kV

Statement: lines overload under contingency.

In-Service

2026

2026

Year:

Project Name: GTC: ROBINS SPRING BUS REPLACEMENT

Description: Upgrade limiting element at Robins Spring substation.

Supporting The Gordon - Sandersville #1 115kV transmission line overloads under contingency.

Statement:

In-Service

Year:

Project Name: GTC: ROBINS SPRING CAPACITOR BANK INSTALLATION

Description: Install a 115kV 2-stage capacitor bank at Robins Spring

Supporting There are low voltage issues on several buses of the Gordon-Sandersville #1 115kV

Statement: transmission line under contingency



In-Service

2026

Year:

Project Name:

HAMMOND – WEISS DAM 115KV LINE REBUILD

Description:

Rebuild 11.2 miles of Hammond - Weiss Dam 115kV from Hammond to the APC border

with a higher capability conductor.

Supporting

The Hammond - Weiss Dam 115kV line overloads under contingency.

Statement:

In-Service

2026

Year:

Project Name: HOPE HULL AREA SOLUTION

Description:

Reconductor approximately 2.7 miles of 397 ACSR from Hope Hull Tap to Hyundai PT

with 795 ACSS at 200°C.

Supporting Statement:

Provides additional operational and maintenance flexibility, which increases reliability.

In-Service

2026

Year:

Project Name:

**HURRICANE CREEK: REPLACE 230/115 KV AUTOBANK & RING CONVERSION** 

Description:

Replace 224 MVA autobank with a 400 MVA autobank and convert straight bus to a ring

bus configuration

Supporting

Hurricane Creek 230/115 kV auto bank overloads under contingency.



In-Service

2026

2026

Year:

Project Name: JORDAN DAM - MARTIN DAM 115 KV TL (LINE B)

Description: Reconductor approximately 21 miles of 397 ACSR with 795 ACSS at 200°C between

Jordan Dam and Martin Dam 115 kV TL (Line B).

Supporting

The Jordan Dam - Martin Dam 115 kV transmission line overloads under contingency.

Statement:

In-Service

Year:

Project Name: KATHLEEN AREA TRANSMISSION IMPROVEMENTS

Description:

Rebuild the Kathleen - Pitts 230kV line (approximately 1.5 miles). Rebuild the Bonaire Primary - Kathleen 230kV line (approximately 6 miles). Upgrade limiting elements at

substation along the Kathleen - Pitts 230kV line.

Supporting Statement:

This project addresses multiple thermal constraints that occur under contingency.

In-Service

2026

Year:

Project Name: KLONDIKE RELAY MODERNIZATION

Description: Upgrade protection scheme at the Klondike station.

Supporting The project addresses stability issues in the transmission network caused by multiple

Statement: contingencies.



In-Service

2026

Year:

Project Name: LAGRANGE - NORTH OPELIKA TS NEW 230 KV TL

Description: APC: Construct approximately 14 miles 230 kV TL between North Opelika TS & new

metering station, West Point SS utilizing 1351 54/19 ACSR @ 100°C.

Supporting

This project resolves multiple overloads and improves system reliability

Statement:

In-Service

Year:

Project Name: MCINTOSH - PURRYSBURG 230KV REACTORS

Description: Install reactors on the McIntosh - Purrysburg (Black and White) 230kV tie lines at

McIntosh. Rebuild 0.1 miles (GPC portion) for both lines to (2) 200C 1351 ACSS

conductor.

2026

Supporting The McIntosh - Purrysburg 230kV (Black & White) tie lines overload under contingency

Statement: and supports transfer capability.

In-Service

2026

Year:

Project Name: MEAG: DRESDEN - LAGRANGE PRIMARY 230KV UPGRADE & JUMPERS

Description: Resag the Dresden - LaGrange Primary 230kV line and upgrade limiting elements at

substations along the line.

Supporting

The Dresden - Lagrange Primary 230kV line overloads under contingency.



In-Service

2026

Year:

Project Name: MEAG: RAY PLACE RD - WASHINGTON #3 115KV LINE REBUILD

Description: Rebuild approximately 17.4 miles of the Ray Place Rd - Washington 115kV line

and upgrade limiting elements at substation along the line.

Supporting

The Ray Place Rd - Washington 115kV line overloads under contingency.

Statement:

In-Service

2026

Year: Project Name:

MEAG: RAY PLACE RD - WASHINGTON (WASHINGTON - WASHINGTON 3) 115KV LINE

**REBUILD** 

Description:

Rebuild approximately 1.2 miles of the Ray Place Rd - Washington 115kV line.

Upgrade limiting element at substation along the line.

Supporting

Ray Place Rd - Washington 115kV line overloads under contingency.

Statement:

In-Service

Year:

Project Name: MORROW - MOUNTAIN VIEW 115KV LINE REBUILD

Description: Rebuild a 1.7 mile segment of the Morrow - Mountain View 115kV line with higher rated

conductor.

2026

Supporting

The Morrow - Mountain View 115kV line overloads under contingency.



In-Service

2026

Year:

Project Name:

**MORROW 115KV RELAY UPGRADE** 

Description:

Upgrade protection scheme at the Morrow substation.

Supporting

A multiple contingency event causes stability issues in the transmission network.

Statement:

In-Service

Year:

Project Name:

MOSS POINT EAST – PASCAGOULA BAYOU CASOTTE 115 KV TRANSMISSION LINE

Description:

Construct approximately 2.7 miles of new 1033.5 ACSR 115 kV transmission line at

100°C from Moss Point East and connect into the existing BP Amoco to Pascagoula

Bayou Cassotte 115 kV transmission line.

Supporting

The Moss Point East to Pascagoula MS Chemical 115 kV transmission line overloads

Statement: under contingency.

2026

In-Service

2026

Year:

Project Name: NASA NORTH SS - MOONSHOT SOLAR 115 KV TRANSMISSION LINE

Description:

Rebuild approximately 5.25 mile, 115 kV transmission line with 1033 ACSR at 100°C.

Supporting

The NASA North SS - Moonshot Solar 115 kV transmission line overloads under

Statement:

contingency.



In-Service

2026

Year:

Project Name: OHARA BREAKER REPLACEMENT

Replace 115kV breaker at the Ohara Substation.

Supporting

Description:

Breaker replacement needed due to a negative duty margin.

Statement:

In-Service

Year:

Project Name: PALMYRA REACTOR REMOVAL

2026

Description: Remove the reactor at Palmyra.

Supporting

A permanent solution makes the reactor at Palmyra unnecessary.

Statement:

In-Service 2026

Year:

Project Name: PROJECT PAYTON BAINBRIDGE

Description: Split Farley - South Bainbridge 230kV line with a 230kV station (Dothan Road) and bring

a 230kV line from Dothan Rd to new customer sub Downrange. Bring another 230kV line

from Climax to customer sub Downrange.

Supporting

Statement:

The transmission network improvements are required to serve load growth in the area.



In-Service 2026

Year:

Project Name: SCOTTDALE RELAY MODERNIZATION

Description: Upgrade protection scheme at Scottdale substation.

Supporting The project addresses stability issues in the transmission network caused by multiple

Statement: contingencies.

In-Service 2026

Year:

Project Name: STONEWALL TELL ROAD NETWORK UPGRADES

Description: Build 230kV line segment to loop in the Stonewall Tell Road customer station into the

East Point - Union City 230kV Black line.

Supporting The project is required to serve load growth in Union City the area.

Statement:

In-Service 2026

Year:

Project Name: SUNNY SOUTH CAPACITOR BANK

Description: Install 1 - 15 Mvar, 115 kV harmonic filter bank at Sunny South SS

Supporting Low voltage in the area under contingency. This project provides voltage support under

Statement: contingency scenarios.



In-Service

2026

Year: Project Name:

UNION CITY - YATES 230KV (WHITE) SWITCH AND TRAP REPLACEMENT

Description: Replace the limiting elements along the Union City - Yates 230kV (White) line.

Supporting Statement:

The Union City - Yates 230kV (White) line overloads under contingency.

In-Service

2026

Year:

Project Name: UNION CITY - YATES 230KV WHITE LINE REBUILD

Description: Rebuild the entire Union City - Yates 230kV White line with higher rated conductor (23.4

miles).

Supporting

Statement:

The Union City - Yates 230kV White line overloads under contingency.

In-Service

2026

Year:

Project Name: WEST TECH CAPACITOR BANKS

Description: Install two new 115kV, 15MVAR capacitors at West Tech

Supporting

Provides additional operational and maintenance flexibility, which increases reliability.



In-Service

2027

2027

Year:

Project Name: ANNISTON-BYNUM 115 KV UPGRADE

Description: Upgrade 6.5 miles from Coldwater – Anniston from 1351 ACSS 54/19 170°C to 200°C

Supporting

The Anniston - Bynum 115 kV transmission line overloads under contingency.

Statement:

In-Service

Year:

Project Name: ATHENA - EAST WATKINSVILLE 115KV (REBUILD)

Description: Rebuild approximately 2.42 miles of the Athena - East Watkinsville 115kV line.

Supporting

The Athena - East Watkinsville 115kV line overloads under contingency.

Statement:

In-Service 2027

Year:

Project Name: AUTAUGAVILLE - EAST PELHAM NEW 230 KV TRANSMISSION LINE

Description: Construct approximately 75 miles new 230 kV transmission line bundled 795 26/7 ACSS

200°C from Autaugaville TS to East Pelham TS

Supporting The Bessemer – South Bessemer 230 kV transmission line overloads under contingency.

Statement: Reduces multiple 230 kV line loadings and provides additional operational and

maintenance flexibility, which increases reliability.



In-Service

2027

Year:

Project Name: BESSEMER – SOUTH BESSEMER 115 KV TRANSMISSION LINE

Description: Reconductor approximately 2 miles of 115 kV TL from McAdory Tap – Airport Lane Tap

from 397 ACSR to 795 ACSR 26/7 at 100C

Supporting

The Bessemer - South Bessemer 115 kV transmission line overloads under contingency.

Statement:

In-Service

2027

2027

Year:

Project Name: DOYLE - LG&E MONROE 230KV - JACKS CREEK LOOP IN

Description: Loop in and out the new Jack's Creek 230kV switching station into the Doyle - LG&E

Monroe 230kV line.

Supporting Contingencies of 230kV transmission lines in the area causes several 230kV lines to

Statement: overload.

In-Service

Year:

Project Name: DYER ROAD - EAST ROANOKE 115KV REBUILD

Description: Rebuild 20.7 miles from Dyer Road to Wansley tap on the Dyer Road - East Roanoke

(APC) 115kV line.

Supporting

Statement:

The Dyer Road - East Roanoke (APC) 115kV line overloads under contingency.



In-Service

2027

Year:

Project Name: **ELLENWOOD NETWORK IMPROVEMENTS** 

Description: Rebuild sections of the Austin Drive - Morrow 115kV line.

Supporting New data center load causes the Morrow - Ellenwood - Customer substation

Statement: (Williamson Road) sections overload under contingency.

In-Service

2027

2027

Year:

Project Name: EMBLEM RIVERSIDE CUSTOMER SUB (FLEXENTIAL)

Description: A new customer substation is being built in Metro West along with an Fiber ICON ring to

better protect the area.

Supporting This is necessary to serve customer load in Douglas County and additional protection to

Statement: the area.

In-Service

Year:

Project Name: ENTERPRISE TS – PINCKARD #2 115 KV TRANSMISSION LINE

Description: Reconductor approximately 7.5 miles of 266 ACSR at 100 °C from Enterprise to Daleville

DS to 795 ACSR at 100° C

Supporting

The Enterprise - Pinckard #2 115 kV transmission line overloads under contingency.



In-Service

2027

Year:

Project Name: G0

**GOSHEN - KRAFT 115KV LINE REBUILD** 

Description:

Rebuild a portion of Goshen - Kraft 115kV line.

Supporting

The Goshen - Kraft 115kV line overloads under contingency.

Statement:

In-Service

Year:

Project Name:

**GOSHEN (SAV) - MCINTOSH 115KV REBUILD** 

Description:

Rebuild approximately 6.7 miles of the Goshen (Sav) - McIntosh 115kV line.

Supporting

The Goshen (Sav) - McIntosh 115kV line overloads under contingency.

Statement:

In-Service

2027

2027

Year:

Project Name:

**GRID - ARKWRIGHT - LLOYD SHOALS 115KV** 

Description:

Rebuild the Arkwright - Lloyd Shoals line

Supporting

The Arkwright-Lloyd Shols 115kV line overloads under contingency



In-Service

2027

Year:

Project Name: GTC

GTC: ADAMSVILLE - BUZZARD ROOST 230KV REBUILD

Description:

Rebuild about 5 miles of the Adamsville - Buzzard Roost 230kV line with higher capability

conductors.

Supporting

The Adamsville - Buzzard Roost 230kV line overloads under a contingency.

Statement:

In-Service

Year:

Project Name:

GTC: DOUGLASVILLE - VILLA RICA 230KV REBUILD (CC NETWORK IMPROVEMENTS)

Description:

Rebuild a 2.5 mile section of the Villa Rica - Douglasville 230kV line with higher capability

conductors.

2027

Supporting Statement:

The Villa Rica - Douglasville 230kV line overloads under a contingency.

In-Service

2027

Year:

Project Name:

GTC: DOYLE - WINDER PRIMARY 230KV LINE JUMPER REPLACEMENT

Description:

Upgrade limiting equipment on the Doyle - Winder Primary 230kV line.

Supporting

The Doyle - Winder Primary 230kV line overloads under contingency.



In-Service 2027

Year:

Project Name: GTC: EAST MOULTRIE - HIGHWAY 112 230 KV LINE

Description: Build approximately 27 miles of new 230kV line between HWY 112 and East Moultrie

substations.

Supporting This project addresses thermal overloads on the Daisy - West Valdosta 230kV line and

Statement: Mitchell - Raccoon Creek 230kV line under contingency.

In-Service 2027

Year:

Project Name: GTC: EAST WALTON 500/230KV PROJECT

Description: GTC:

- Construct the East Walton 500/230kV substation

- Construct the Bostwick 230kV switching station
- Construct the East Walton Rockville 500kV line
- Construct the Bethabara East Walton 230kV line
- Construct the Bostwick East Walton 230kV line
- Construct the East Walton Jack's Creek 230kV line
- At Bethabara, terminate the East Walton 230kV line
- Loop the East Social Circle East Watkinsville 230kV line into Bostwick
- Replace line trap at East Watkinsville on the Bostwick 230kV line

#### GPC:

- Construct the Rockville 500kV switching station
- Loop the Scherer Warthen 500kV line into Rockville
- Loop the Doyle LG&E Monroe 230kV line into Jack's Creek.

#### MEAG:

- Construct the Jack's Creek 230kV switching station

Supporting Statement:

Contingencies of several 230kV transmission lines in the central Georgia area causes

multiple 230kV transmission lines to overload.



In-Service

Project Name:

2027

Year:

GTC: EATONTON PRIMARY (035591) - LICK CREEK 115KV LINE REBUILD

Description: Rebuild approximately 7.5 miles of the Eatonton Primary - Lick Creek 115 kV line section.

Supporting The Eatonton Primary - Lick Creek 115kV line conductor and structures are at the end of

Statement: life and had recent maintenance issues.

In-Service

Year:

Project Name: GTC: GARRETT ROAD - VILLA RICA 230KV LINE REBUILD/RECONDUCTOR (CC NETWORK

**IMPROVEMENTS)** 

Description: Reconductor and Rebuild approximately 14 miles of the Garrett Road - Villa Rica 230kV

line.

2027

Supporting The Garrett Road - Villa Rica 230kV line overloads under contingency.

Statement:

In-Service 2027

Year:

Project Name: GTC: HICKORY LEVEL - VILLA RICA 230KV LINE RECONDUCTOR

Description: Reconductor to higher capability conductors on 8.6 miles of 230kV line.

Supporting The Hickory Level – Villa Rica 230kV line overloads under contingency.



In-Service

2027

Year:

Project Name: GTC: RIDDLEVILLE BUS REPLACEMENT

Description: Replace the main 115kV bus at Riddleville substation with higher rating.

Supporting

The Riddleville-North Louisville J 115kV line section overloads under contingency

Statement:

In-Service

Year:

Project Name: GTC: SKC 115KV BUS AND JUMPER REPLACEMENT

Description: EDITED Upgrade limiting elements at the SKC substation.

Supporting Statement:

The Covington #2 - SKC 115kV line overloads under contingency.

In-Service

2027

2027

Year:

Project Name: GTC: SOUTH HAZLEHURST - NEW LACY 230KV LINE

Description: Build a new 230kV transmission line (approximately 25 miles) between South

Hazlehurst and New Lacy.

Supporting

Statement:

The project will address multiple thermal overloads that occur under contingency.



In-Service

2027

2027

Year:

Project Name:

GTC: SWITCH WAY - THORNTON ROAD 230KV LINE REBUILD

Description:

Rebuild to higher capability conductors on a 1 mile portion of the Switchway - Thornton

Road 230kV line.

Supporting

The Switch Way - Thornton Road 230kV line overloads under contingency.

Statement:

In-Service

Year:

Project Name:

**GULLATT ROAD UPSTREAM TRANSMISSION IMPROVEMENTS** 

Description:

Upstream transmission improvements to serve increasing load along existing

transmission lines.

Supporting

Addition of new customer in the Fulton County area overloads existing transmission

Statement: lines.

In-Service

Year:

Project Name:

HILL VIEW AND GRASSY HOLLOW SWITCHING STATIONS (CC NETWORK

**IMPROVEMENTS)** 

Description:

Build two 230kV switching stations (Hill View and Grassy Hollow) looping into the

Cartersville - McGrau Ford 230kV line (8.5 miles apart). Build three new 230kV lines: Hill View - Cass Pine, Cass Pine - Great Valley and Great Valley - Grassy Hollow (total 18.9

miles)

2027

Supporting

The transmission network improvements are required to serve load growth in

Statement:

Cartersville area.



In-Service

2027

2027

2027

Year:

Project Name: **JESUP - OFFERMAN 115KV REBUILD** 

Description: Rebuild approximately 20 miles of the Jesup - Offerman 115kV line.

Supporting

The Jesup - Offerman 115kV transmission line overloads under contingency.

Statement:

In-Service

Year:

Project Name: **LAWRENCEVILLE - WINDER 115KV LINE REBUILD** 

Description: Rebuild approximately 1.2 miles of the Lawrenceville - Winder 115kV line.

Supporting

The Lawrenceville - Winder 115kV transmission line overloads under contingency.

Statement:

In-Service

Year:

Project Name: **LAWRENCEVILLE - WINDER PRIMARY 230KV LINE REBUILD** 

Description: Rebuild the entire Lawrenceville - Winder Primary 230kV line.

Supporting

The Lawrenceville - Winder 230kV transmission line overloads under contingency.



In-Service

2027

Year:

Project Name: MEAG: FORTSON SUBSTATION MODERNIZATION

Description: Complete modernization and replacement of obsolete equipment and relays for the

500kV, 230kV, and 115kV yards. Add a redundant relay scheme at Fortson.

Supporting Several 115kV lines overloads under contingency. Substation modernization needed

Statement: due to obsolete equipment and relays.

In-Service

2027

Year:

Project Name: MEAG: RAY PLACE RD - WARRENTON PRIMARY REBUILD

Description: Rebuild approximately 10 miles of the Ray Place - Warrenton Primary 115kV line.

Upgrade limiting element at substation along the line.

Supporting The Ray Place Rd - Warrenton 115kV line exceeds its thermal rating for various

Statement: contingencies.

In-Service

2027

Year:

Project Name: MICROSOFT - SHUGART

Description: Rebuild the Line Creek 230kV as breaker and a half configuration. Connect existing

230kV lines into the new breaker and a half layout at Line Creek. Build two short lines

from Line Creek to customer station (0.3 miles each).

Supporting The transmission network improvements are required to serve load growth in Palmetto

Statement: area.



In-Service

2027

Year:

Project Name: M

**MORROW - YATES COMMON 115KV LINE REBUILD** 

Description: Rebuild a section of the Morrow - Yates Common 115kV line.

Supporting

Line sections on the Morrow - Yates 115kV line overload under contingency.

Statement:

In-Service

Year:

2027

Project Name:

POSSUM BRANCH - YATES COMMON 115KV REBUILD (YATES TO CLEM)

Description: Rebuild an approximate 11 mile section of the Possum Branch - Yates 115kV line and

replace limiting elements along the line.

Supporting

Statement:

The Possum Branch – Yates 115kV line overloads under contingency.

In-Service

2027

Year:

Project Name:

**SANDERSVILLE #1 - WADLEY PRI 115KV REBUILD** 

Description:

Rebuild approximately 24.3 miles of the Sandersville #1 - Wadley Primary 115kV line.

Replace limiting elements in substations along the line.

Supporting

The Sandersville # 1 - Wadley Primary 115kV line overloads under contingency.



In-Service

2027

Year:

Project Name: SUMMER LAKE - VILLA RICA 230KV REBUILD (CC NETWORK IMPROVEMENTS)

Description: Rebuild a 2.5 mile portion of the Summer Lake - Villa Rica 230kV line with higher

capability conductors.

Supporting

The Summer Lake - Villa Rica 230kV line overloads under a contingency.

Statement:

In-Service

2027

Year:

Project Name: TOMOCHICHI 500/230KV SOLUTION(CC NETWORK IMPROVEMENTS)

Description: Build the new Tomochichi 500/230kV switching station along with two new 230kV lines.

Supporting The transmission network upgrades under this project are required to reliably serve load

Statement: growth in Butts County

In-Service

2028

Year:

Project Name: ACIPCO TS - BOYLES 230 KV TRANSMISSION LINE

Description: Construct approximately 6 miles of 1351 54/19 ACSR at 100°C from ACIPCO TS to Boyles

TS.

Supporting

The Boyles - Miller 230 kV transmission line overloads under contingency. Also provides

Statement: additional operational and maintenance flexibility, which increases reliability.



In-Service

2028

Year:

Project Name: AULTMAN ROAD-PERRY 115KV LINE REBUILD

Description: Rebuild the PPG J2 - Langston Rd line section of the Aultman Road - Perry 115kV line.

Supporting Statement:

The Aultman Road - Perry 115kV line overloads under contingency.

In-Service

2028

Year:

Project Name: BARRY - ELLICOTT 230 KV SERIES REACTOR

Description: New 0.5% Series Reactor on the Barry - Ellicott 230 kV TL

Supporting

The project addresses short circuit constraints.

Statement:

In-Service 2028

Year:

Project Name: BREMEN - CROOKED CREEK 115 KV TRANSMISSION LINE

Description: APC: Reconductor approximately 29.5 miles of 397 30/7 ACSR 100°C to 795 ACSS 200°C

from Crooked Creek TS to Indian Creek Metering Station.

Supporting

Statement:

The Bremen - Crooked Creek 115 kV transmission line overloads under contingency.



In-Service

2028

Year:

Project Name:

**COLEMAN - DEAN FOREST 115KV LINE REBUILD** 

Description:

Rebuild 6.67 miles of the Coleman - Dean Forest 115kV line.

Supporting

The Coleman - Dean Forest 115kV line overloads under contingency.

Statement:

In-Service

2028

Year: Project Name:

**EAST VILLA RICA AREA SWITCHING STATION** 

Description:

Build a new switching station East of Villa Rica.

Supporting

The project is required to serve load growth and customers in Douglas County.

Statement:

In-Service

2028

Year: Project Name:

EAST VILLA RICA POWER FLOW CONTROLLERS INSTALLATION

Description:

Installation of power flow controllers at the new East Villa Rica Switching Station on the

Douglasville - Villa Rica 230kV and Summer Lake - Villa Rica 230kV lines.

Supporting

Statement:

The project addresses multiple thermal overloads that occur under contingency.



In-Service 2028

Year:

Project Name: **ELLICOTT SUBSTATION EXPANSION PROJECT** 

Description: Add 6 new 230kV terminals at Ellicott SS. Ellicott SS to become Ellicott TS. Add new

> 115kV station with breaker and a half configuration to support (13) - 115kV line terminations, to include a new 230/115kV autobank. Barry SP - Reconfigure substation

and replace structures.

Supporting Upgrade existing and construct new transmission facilities to provide additional

Statement: operational and maintenance flexibility, which increases reliability.

In-Service

2028

Year:

Project Name: FIRST AVENUE - NORTH COLUMBUS 115KV LINE REBUILD

Description: Rebuild the North Columbus - First Avenue 115kV line.

Supporting Statement: The North Columbus - First Avenue 115kV line overloads under contingency.

In-Service 2028

Year:

Project Name: **FITZGERALD - PITTS 115 KV LINE REBUILD** 

Description: Rebuild Fitzgerald - Pitts 115kV line

Supporting

The Fitzgerald - Pitts 115kV line overloads under contingency



In-Service

2028

Year:

Project Name: GTC: BARNESVILLE - SOUTH GRIFFIN 230KV PROJECT

Description: Construct a new 230kV line from South Griffin substation - Barnesville Primary substation

Supporting The Barnesville - South Griffin 115kV line overloads under contingency.

Statement:

In-Service

Year:

2028

Project Name: GTC: BARNEYVILLE - EAST MOULTRIE 115KV NEW LINE

Description: Build approximately 20 miles of a new 115kV line from Barneyville to East Moultrie.

Supporting The Barneyville - Pine Grove Primary 115kV line and Barneyville - Douglas 115kV line

Statement: overload under contingency.

In-Service 2028

Year:

Project Name: GTC: BONAIRE PRIMARY 500/230KV XFMR REPLACEMENT & RELAY MOD

Description: Replace 500/230 kV, auto transformer with a new transformer. Replace obsolete relay

panels

Supporting Replacement of obsolete relays and major equipment at Bonaire Primary needed due to

Statement: ongoing maintenance issues



In-Service

2028

Year:

Project Name: GTC: BOSTWICK - EAST SOCIAL CIRCLE 230KV TRANSMISSION LINE RECONDUCTOR

Description: Reconductor approximately 10.8 miles of the East Social Circle - East Watkinsville

230kV line.

Supporting

The Bostwick - East Social Circle 230kV line overloads under contingency.

Statement:

In-Service

2028

Year:

Project Name: GTC: NORTH DUBLIN 230/115KV TRANSFORMERS AND BUS-TIE BREAKER

Description: Replace North Dublin 230/115 kV Banks A & B with (2) new 230/115 kV auto

transformers. Replace North Dublin 230 kV bus tie breaker with a new breaker. Replace

North Dublin 115 kV bus tie breaker with a new breaker.

Supporting Replacement of major equipment at North Dublin needed due to ongoing maintenance

Statement: issues.

In-Service

2028

Year:

Project Name: JACK MCDONOUGH - NORTHWEST (BLACK) 230KV REBUILD

Description: Rebuild the Jack McDonough - Northwest (Black) 230kV line (4.59 miles).

Supporting The Northwest – Jack McDonough 230kV line exceeds its thermal rating under

Statement: contingency.



In-Service

2028

Year:

Project Name: LEEDS TS - MOODY SS 115 KV TRANSMISSION LINE RECONDUCTOR

Description: Reconductor approximately 5.0 miles of 795 ACSR at 100°C with 1033.5 ACSS at 200°C.

Supporting

The Leeds to Moody 115 kV transmission line overloads under contingency.

Statement:

In-Service

2028

Year:

Project Name:

**MAGNOLIA - TRUMAN PARKWAY 115KV REBUILD** 

Description: Rebuild approximately 3 miles of the Magnolia - Truman Parkway 115kV line. Upgrade

limiting elements in substations along the line.

Supporting

Statement:

The Magnolia - Truman Parkway 115kV line overloads under contingency.

In-Service 2028

Year:

Project Name: MEAG: BRUMBLEY CREEK - SOUTH BAINBRIDGE 115KV REBUILD

Description: Rebuild approximately 2.1 miles of the South Bainbridge - Thomasville 115kV line.

Supporting

The South Bainbridge - Thomasville 115kV line overloads under contingency.



In-Service 2028

Year:

Project Name: MEAG: THOMASVILLE 230/115KV AUTOBANK REPLACEMENT

Description: Replace the 230/115kV autotransformer #4 at Thomasville substation.

Supporting The 230/115kV auto transformer #4 at Thomasville substation overloads under

Statement: contingency.

In-Service

Year:

Project Name: MILLER SP 500 KV SERIES BREAKER

Description: Install a 500 kV series breaker at Miller SP

Supporting The Boyles - Miller 230 kV transmission line and many other transmission lines overload

Statement: under contingency.

2028

In-Service 2028

Year:

Project Name: PITTMAN ROAD - WEST POINT DAM 115KV REBUILD

Description: Rebuild the entire Pittman Road - West Point Dam 115kV line. Upgrade limiting element

at substation along the line.

Supporting The Pittman Road - West Point Dam 115kV line overloads under contingency.



In-Service

2028

2028

Year:

Project Name: PLANT YATES BREAKER AND HALF STATION

Description: Rebuild the Yates 6 & 7 substation.

Supporting Yates 6 & 7 needs to be rebuilt to facilitate new generation.

Statement:

In-Service

Year:

Project Name: PS: GASKIN – SOUTHPORT 115 KV TRANSMISSION LINE

Description: Construct approximately 9.0 miles of new 115 kV transmission line from Gaskin

Switching Station to Southport substation with 795 ACSR at 100°C.

Supporting Improve the reliability of Gulf Coast Electric's substations by providing a looped service

Statement: feed.

In-Service 2028

Year:

Project Name: SOUTH MACON 115KV BUSES 1 & 2 REPLACEMENT

Description: Replace the 115kV buses 1 and 2 at South Macon.

Supporting Statement:

The 230/115kV auto transformers at South Macon overload under contingency.

103



In-Service 2028

Year:

Project Name: SOUTH TUSCALOOSA - 31ST AVENUE 115 KV TL UPGRADE

Description: Upgrade ~5 miles of various 795 ACSR conductor at 100°C to 125°C

Supporting The South Tuscaloosa - 31st Avenue 115 kV transmission line overloads under

Statement: contingency.

In-Service 2028

Year:

Project Name: THURLOW DAM - PIN OAKS 115 KV TL

Description: Reconductor approximately 21 miles of 397 ACSR at 100 °C from Thurlow Dam to Pin

Oaks to 795 ACSS at 200°C.

Supporting The Thurlow Dam - Notasulga 115 kV transmission line overloads under contingency.

Statement:

In-Service 2028

Year:

Project Name: THURLOW DAM – UNION SPRINGS 115 KV TL

Description: Rebuild approximately 31.5 miles of 397 ACSR at 75°C from Thurlow Dam to Union

Springs to 795 ACSS @ 200 deg C

Supporting The Thurlow Dam - Union Springs 115 kV transmission line overloads under contingency.



In-Service

2028

Year:

Project Name: UNION CITY - YATES 230KV BLACK LINE REBUILD

Description: Rebuild the entire Union City - Yates 230kV Black line (approximately 23.4 miles).

Replace limiting elements at substations along the line.

Supporting

The Union City - Yates 230kV Black line overloads under contingency.

Statement:

In-Service

Year:

Project Name: VILLA RICA UPGRADES (CC NETWORK IMPROVEMENTS)

Description: Add a new 500/230kV auto transformer at Villa Rica, and loop in and out the Bowen -

Union City 500kV line into Villa Rica. Convert the 230kV side to a breaker and a half

scheme.

2028

Supporting The transmission network upgrades under this project are required to reliably serve load

Statement: growth in Villa Rica area.

In-Service 2029

Year:

Project Name: ALICEVILLE - STANSEL 115 KV TRANSMISSION LINE

Description: Construct a new approximately 17-mile 115 kV TL from Aliceville TS to Stansel TS with

795 ACSR 26/7 ACSR at 100°C.

Supporting

Provides additional operational and maintenance flexibility, which increases reliability.



In-Service

2029

Year:

Project Name: ASHLEY PARK-WANSLEY 500KV

Description: Construct a 500kV line from Ashley Park to Wansley, approximately 35 miles long.

Supporting The Villa Rica-Wansley 500kV line overloads under contingency. Reduces multiple 500

Statement: kV and 230kV line loadings and provides additional operational and maintenance

flexibility, which increases reliability.

In-Service

2029

Year:

Project Name: BASSETT CREEK - CALVERT - WEST MCINTOSH 230 KV LOOP-IN

Description: Loop the existing Bassett Creek - Tensaw 230kV TL into the West McIntosh substation

and upgrade three 115 kV 2000A switches to 3000A.

Supporting The Barry - CAES 115 kV transmission line and the Bucks - Ellicott 230 kV transmission

Statement: line overload under contingency. This loop-in alleviates those overloads.

In-Service

2029

Year:

Project Name: BAY CREEK - CONYERS 230KV REBUILD

Description: Rebuild the Rockdale to Bay Creek segment of the Bay Creek - Conyers 230kV line.

Supporting

Statement:

The Bay Creek - Conyers 230kV line will overload under certain contingencies.



In-Service

2029

Year:

Project Name: BLAKELY PRIMARY - HUCKLEBERRY 115KV REBUILD

Description: Rebuild the Blakley Primary - Huckleberry 115kV line.

GPC: Replace jumpers at Blakely Primary

GTC: Replace jumpers at Blakely and Huckleberry

Supporting Statement:

Blakley Primary - Huckleberry 115kV line overloads under contingency.

In-Service

2029

Year:

Project Name: BUTLER - THOMASTON 230KV LINE

Description: Rebuild the radial Thomaston - Butler 115kV line to 230kV network operation. Make

all necessary upgrades and accommodations at the substation along the line.

Supporting Line conversion educes multiple 230 kV line loadings and provides additional operational

Statement: and maintenance flexibility, which increases reliability.

In-Service

2029

Year:

Project Name: ELLICOTT-NORTH MOBILE #2 115 KV UPGRADE

Description: Upgrade 8.43 miles of the Ellicott - North Mobile 115 kV TL, between North Mobile and

Radcliffe DS, from 397 26/7 ACSR at 75C to 125C

Supporting

The Ellicott-North Mobile #2 115 kV transmission line overloads under contingency.



In-Service

2029

Year:

Project Name:

**EUTAW – GREENE COUNTY 115 KV TRANSMISSION LINE** 

Description:

Reconductor approximately 23 miles of 115 kV TL from Eutaw TS to Greene County SP

from 397 ACSR 26/7 at 100°C to 795 ACSR 26/7 at 100°C.

Supporting

The Eutaw - Greene County 115 kV transmission line overloads under contingency.

Statement:

In-Service

Year:

2029

2029

Project Name:

FLOMATON 230/115 KV SUBSTATION

Description:

Install a new 230/115 kV, 480 MVA transformer at Flomaton TS.

Supporting

Provides additional operational and maintenance flexibility, which increases reliability.

Statement:

In-Service

Year:

Project Name:

**GADSDEN – GULF STATES STEEL 115 KV TRANSMISSION LINE** 

Description:

(1.) Reconductor approximately 2.5 miles 397 26/7 ACSR to 795 ACSR 26/7 from Gulf

States Steel to Morgan's Crossroads.

(2.) Replace Gulf States Steel DS with a new 5-terminal, 4-breaker 115 kV ring bus SS

across the street from the existing substation.

(3.) Move the Linde Inc (Gadsden) 115 kV tap from Gulf States Steel DS to the new West

Gadsden SS.

Supporting

Provides additional operational and maintenance flexibility which then increases

Statement:

reliability. In addition, associated with replacing aging equipment at Gulf States Steel DS.



In-Service

2029

Year:

Project Name:

**GTC: BARNESVILLE PRIMARY - THOMASTON 230KV** 

Description:

Rebuild Barnesville Primary - Thomaston 230kV line. Replace line switches and jumpers.

Supporting

Barnesville Primary - Thomaston 230kV line overloads under contingency.

Statement:

In-Service

Year:

2029

Project Name:

GTC: BAY CREEK 230/115KV SECOND AUTO TRANSFORMER

Description:

Install a second auto transformer at the Bay Creek substation.

Supporting

The Bay Creek - Monroe 115kV line overloads under contingency.

Statement:

In-Service

2029

Year:

Project Name:

GTC: CAVENDER DRIVE 500/230KV AUTOBANK

Description:

GTC will turn Cavender Drive into a 500/230kV station looping in the Villa Rica - Union

City 500kV line.

Supporting

Statement:

The project solves multiple thermal overloads in Metro South and Metro West Atlanta.



In-Service

2029

Year:

Project Name: GTC: CLIFTONDALE - LINE CREEK 230KV LINE

Description: A new 11.6 mile 230kV line is being built from Cliftondale to Line Creek.

Supporting The line is being built to network the area and remove thermal overloads.

Statement:

In-Service

Year:

2029

Project Name: GTC: DRESDEN – TALBOT 500KV LINE

Description: Build a new 500kV line from new Talbot substation to Dresden.

Supporting This strategic project will address multiple thermal overloads that occur under

Statement: contingency.

In-Service 2029

Year:

Project Name: GTC: HOPEWELL 230/115 KV BANK A

Description: Replace the Hopewell auto transformer.

Supporting The Hopewell 230/115kV auto transformer surpasses its rating under contingency.



In-Service

2029

Year:

GTC: NEW 230KV LINE FROM BUZZARD ROOST - CAVENDER DRIVE Project Name:

Description: Build a new 7 mile 230kV line from Cavender Drive to Buzzard Roost.

Supporting New 230kV line mitigates multiple thermal overloads due to contingencies in the area.

Statement:

In-Service

2029

Year: Project Name:

**GTC: TENASKA - WANSLEY 500KV LINE** 

Description: Construct a 5 miles long 500kV line between Tenaska and Wansley. Make all necessary

accommodations at the substations for the line termination.

Supporting This project reduces multiple 500 kV line loadings, and provides additional operational

Statement: and maintenance flexibility, which increases reliability.

In-Service 2029

Year:

Project Name: **HOLT STREET - CARTER HILL ROAD 115 KV TL** 

Reconductor 1.81 miles of 397 ACSR 18/1 at 100°C to 795 ACSR 45/7 ACSR at 100°C Description:

from Holt Street - Carter Hill Rd.

Supporting

Provides additional operational and maintenance flexibility, which increases reliability.



In-Service

2029

2029

Year:

Project Name: LOWER RIVER - WEBB (APC) 115KV RECONDUCTOR

Description: Reconductor approximately 0.97 miles of the Lower River - Webb 115kV line.

Supporting

Lower River - Webb (APC) 115kV line overloads under contingency.

Statement:

In-Service

Year:

Project Name: MCEVER ROAD - SHOAL CREEK 115KV TRANSMISSION LINE REBUILD

Description: Rebuild approximately 3.05 miles of the McEver Road - Shoal Creek 115kV line.

Supporting

The McEver Road - Shoal Creek 115kV transmission line overloads under contingency

Statement:

In-Service 2029

Year:

Project Name: MCMANUS - WEST BRUNSWICK 115KV REBUILD

Description: Rebuild approximately 5.7 miles of the McManus - West Brunswick 115kV line.

Supporting The McManus - West Brunswick 115kV line overloads under contingency.

Statement:

In-Service 2029

Year:

Project Name: MEAG: SLAPPEY DRIVE - WESTOVER 115KV LINE REBUILD

Description: Rebuild approximately 2.92 miles of Slappy Drive - Westover 115kV line.

Supporting Slappey Drive - Westover 115kV line overloads under contingency.



In-Service

2029

Year:

Project Name: MILLER - GORGAS 230 KV TL UPGRADE

Description: Upgrade approximately 16 miles of 1351 54/19 ACSR at 100° to 125°C on the Miller -

Gorgas 230 kV transmission line.

Supporting

The Miller - Gorgas 230 kV transmission line overloads under contingency.

Statement:

In-Service

2029

Year:

Project Name: MOBILE AREA NETWORKING – 3RD PATH

Description: Construct new Dawes SS at Dawes Tap on the Big Creek – N. Theodore 115kV TL.

Supporting

Provides additional operational and maintenance flexibility, which increases reliability.

Statement:

In-Service 2029

Year:

Project Name: MOUNDVILLE SOLUTION

Description: Construct a new 6-mile, 115kV TL, 795, 26/7 ACSS @ 200°C from Moundville TS to a

new 3-way switch near structure 7 between Colonial Pipe (Moundville) and Westervelt

Co, new terminal at Moundville TS, Install 1-way switch near Structure 41.

Supporting

Provides additional operational and maintenance flexibility, which increases reliability.



In-Service

2029

Year: Project Name:

**NORTH THEODORE AREA PROJECT** 

Description:

 $\bullet$  Reconductor ~0.9 miles of the Hollinger's Island – Holcim 115kV TL to 795 ACSR at 100°C.

• Construct New SS near Tronox LLC and Switch 19985.

• Construct ~5.3 miles of 795 ACSR at 100°C 115kV TL from N. Theodore – Praxair

Tap.

Install new 115kV terminal at N. Theodore TS

Supporting Statement:

Provides additional operational and maintenance flexibility, which increases reliability.

In-Service

2029

Year:

Project Name: RI

**RICE HOPE NEW AUTO TRANSFORMER** 

Description:

Install a new 230/115kV 400MVA auto transformer at Rice Hope and loop in the

Crossgate - McIntosh 230kV line.

Supporting

The McIntosh and Kraft B & C auto banks overload under various contingencies.

Statement:

In-Service 2029

Year:

Project Name: ROCKY RIDGE RADIAL 115 KV TRANSMISSION LINE

Description: Reconductor approximately 0.5 miles of 115 kV TL from Rocky Ridge Tap to Rocky Ridge

DS from 4/0 ACSR at 50C to 795 ACSR 26/7 at 100C

Supporting

Statement:

Provides additional operational and maintenance flexibility, which increases reliability.



In-Service 2029

Year:

Project Name: **SOUTH BAINBRIDGE - SINAI (FPL) 115KV LINE RECONDUCTOR** 

Description: Rebuild the Four Mile tap - Recovery - Sinai (FPL) segment of the Sinai (FPL) - South

Bainbridge 115kV line. Replace limiting elements at substations along the line.

Supporting

Sinai (FPL) - South Bainbridge 115kV line overloads under contingency.

Statement:

In-Service

Year:

Project Name: ANNISTON - HAMMOND 230KV LINE REBUILD

Description: Rebuild the 28.12 miles section between Hammond and the Goshen tap with 200C 1351

ACSS Martin conductor.

Supporting Statement:

The Anniston - Hammond 230kV line overloads under contingency.

In-Service

2030

2030

Year:

Project Name: ATKINSON - NORTHSIDE DRIVE 115KV REBUILD

Description: Rebuild a 3.2 mile portion of the Atkinson - Northside Drive 115kV line with higher

capability conductors.

Supporting

The Atkinson - Northside Drive 115kV line overloads under a contingency.



In-Service

2030

2030

Year:

Project Name: ATKINSON - NORTHWEST 115KV REBUILD

Description: Rebuild a 1.2 mile portion of the Atkinson - Northwest 115kV line with higher capability

conductors.

Supporting

The Atkinson - Northwest 115kV line overloads under a contingency.

Statement:

In-Service

Year:

Project Name: BAINBRIDGE TRANSMISSION: EAST RIVER ROAD AND EAST BAINBRIDGE

Description: This project will construct a new 115kV breaker and a half substation.

Supporting This project is part of an overall reconfiguration of the Bainbridge area to improve the

Statement: distribution reliability, transmission security and operational flexibility.

In-Service 2030

Year:

Project Name: **DEMOPOLIS TS – CEMEX 115 KV TRANSMISSION LINE** 

Description: Construct approximately 1.0 mile of 795 ACSR 115 kV transmission line at 100°C from

Demopolis TS to Cemex Tap.

Supporting

Provides additional operational and maintenance flexibility, which increases reliability.



In-Service

2030

Year:

Project Name: DU: DAWSON CROSSING - NELSON (WHITE) 115 KV REBUILD

Description: Rebuild approximately 15.7 miles of the Dawson Crossing - Nelson (White) 115kV line.

Supporting

The Dawson Crossing - Nelson (White) 115kV line overloads under contingency.

Statement:

In-Service

Project Name:

2030

Year:

Description: Rebuild a 3 mile section of the East Point - Tributary 230kV line with higher capability

conductors.

Supporting

Statement:

The line overloads under a contingency.

**EAST POINT - TRIBUTARY 230KV REBUILD** 

In-Service 2030

Year:

Project Name: EAST POINT - UNION CITY 230KV BLACK LINE RECONDUCTOR

Description: Reconductor part of the East Point - Union City 230kV Black line with higher rated

conductor. Replace limiting elements along the line.

Supporting

The East Point - Union City 230kV Black line overloads under contingency.



In-Service

2030

Year:

Project Name: ECHECONNEE-WELLSTON 115KV LINE REBUILD

Description: Rebuild approximately 11.8 miles of the Echeconnee - Wellston 115kV line and the

limiting elements along the line. Replace the bus at North Warner Robins.

Supporting

The Echeconnee - Wellston 115kV line overloads under contingency

Statement:

In-Service

Year:

Project Name: FARLEY-TAZEWELL 500KV

2030

Description: Construct a new 500kV line from Farley to Tazewell substation. Construct a 5 breaker

500kV ring bus to loop in the Blacksmith - Talbot 500kV line, terminate the new Farley -

Tazewell 500kV and Talbot #2 - Tazewell 500kV lines. Install a 500/230kV auto

transformer to connect to the existing 230kV switchyard.

Supporting

Statement:

This project addresses multiple thermal overloads that occur under contingency.

In-Service 2030

Year:

Project Name: GAINESVILLE #2 - MCEVER ROAD 115 KV REBUILD

Description: Rebuild approximately 5.3 miles of the Gainesville #2 - McEver Rd 115 kV line.

Supporting

Statement:

The Gainesville #2 - McEver Rd 115 kV line overloads under contingency.



In-Service

2030

Year:

Project Name: GLENWOOD SPRINGS - LAKE OCONEE 115KV LINE REBUILD

Description: Rebuild the North Eatonton Junction - Putnam Sawmill Junction line

Supporting The Glenwood Springs - Lake Oconee 115kV line overloads under base case conditions.

Statement:

In-Service

Year:

2030

Project Name: GLENWOOD SPRINGS 115KV CAP BANK

Description: Install a 115kV capacitor bank at Glenwood Springs substation

Supporting Low bus voltage issues were identified on the 115kV buses due to a contingency

Statement:

In-Service 2030

Year:

Project Name: GOAT ROCK SERIES REACTORS INSTALLATION

Description: Install 1% series reactors on the Fortson - Goat Rock (Black) 230kV and Fortson - Goat

Rock (White) 230kV.

Supporting

Statement:

The Fortson - Goat Rock (Black & White) 230kV lines overload under contingency.



In-Service

2030

Year:

Project Name: GOLDENS CREEK - WARRENTON PRIMARY 230KV REBUILD

Description: Rebuild approximately 0.34 miles of the Goldens Creek - Warrenton Primary 230kV line.

Supporting The Goldens Creek - Warrenton Primary 230kV transmission line overloads under

Statement: contingency.

In-Service

2030

Year:

Project Name: GOSHEN AREA SOLUTION

Description: Construct a 230kV switching station on the Waynesboro - Wilson 230kV line and a new

230kV line between the switching station and Goshen, approximately 12 miles.

Supporting

The Augusta Corporate Park - Vogtle 230kV line overloads under contingency.

Statement:

In-Service 2030

Year:

Project Name: GTC: BIG SMARR - TOMOCHICHI 500KV

Description: Construct a 500kV line from Big Smarr to Tomochichi, approximately 36 miles long.

Make the necessary modifications at Big Smarr and Tomochichi to add breakers and

terminate the line.

Supporting

This project addresses multiple thermal overloads that occur under contingency.



In-Service 2030

Year:

Project Name: GTC: EAST WATKINSVILLE 230 KV STATION MODIFICATION

Description: Replace reactor at East Watkinsville on the Russell Dam 230kV line.

Supporting Equipment on the East Watkinsville - Russell Dam 230kV line overloads under

Statement: contingency.

In-Service

Year:

2030

Project Name: GTC: GORDON-SANDERSVILLE #1 115KV LINE REBUILD (DEEPSTEP-SAND #6)

Description: Rebuild 10.49 miles of the Deepstep-Robins Spring Robins Spring - Kaolin J, and Kaolin J -

Sandersville #6 line sections of the Gordon - Sandersville #1 115kV line.

Supporting

The Gordon - Sandersville #1 115kV line overloads under contingency

Statement:

In-Service 2030

Year:

Project Name: GTC: HARTWELL DAM - HARTWELL ENERGY 230KV SERIES REACTORS

Description: Replace the series reactors on the Hartwell Dam - Hartwell Energy 230kV line with larger

size.

Supporting The reactors on the Hartwell Dam - Hartwell Energy 230kV line overload under

Statement: contingency.



In-Service

2030

Year:

Project Name: GTC: HARTWELL ENERGY - MIDDLE FORK 230KV LINE

Description: Construct a new 230kV line, approx. 35 miles, from Hartwell Energy to Middle Fork. GTC:

Expand Hartwell Energy 230kV and Middle Fork 230kV substations for the new line

termination.

Supporting Statement:

This new line will address overloads under contingency and supports transfer capability.

In-Service

2030

Year:

Project Name: GTC: POND FORK - MIDWAY 115KV LINE

Description: Construct approximately 6 miles of 115kV line utilizing the existing GTC owned portion

of the North Jackson - Lawrence Smith 46kV ROW. Add a second 230/115kV auto

transformer at Pond Fork substation.

Supporting

Statement:

The future Banks Crossing - Pond Fork 115kV line overloads under contingency.

In-Service

2030

Year:

Project Name: GTC: ROCKVILLE - TIGER CREEK -WARTHEN 500KV LINES

Description: Build the new 500kV line from Rockville to Tiger Creek and Tiger Creek to Warthen,

approximately 20 miles and 9 miles long respectively. Build a 500kV yard at Tiger Creek and install a 500/230kV auto transformer. Make all necessary accommodations at

Warthen and Rockville for the new 500kV breakers.

Supporting Statement:

This project addresses several thermal constraints that occur under contingency and provides additional operational and maintenance flexibility, which increases reliability.

122



In-Service

2030

Year:

Project Name: GTC: TALLBOT #2 - TAZEWELL 500KV LINE

Description: Build a new 500kV line from Tazewell to Talbot #2, approximately 20 miles. Make all

necessary accommodations at Tazewell and Tallbot #2 for the new 500kV breakers and

line termination.

Supporting Statement:

This project addresses multiple thermal overloads that occur under contingency.

In-Service

2030

Year:

Project Name: GTC: TIGER CREEK-ROCKVILLE-NORTH SPA 230KV PROJECT

Description: Build a new 4 - breaker 230kV ring bus at Rockville substation (no auto transformer to

be added at this time). Loop in the Eatonton Primary #2 - Wallace Dam 230kV line.

Build a new 230kV line to Tiger Creek. Build a new 230kV line to North Spa.

Supporting

This projects addresses thermal constraints in the 230kV system of the area and

Statement: provides additional operational and maintenance flexibility, which increases reliability.

In-Service

2030

Year:

Project Name: JEFFERSON ROAD - WINDER PRIMARY 115KV REBUILD

Description: Rebuild approximately 11 miles of the Jefferson Road - Winder Primary 115kV line.

Supporting

The Jefferson Road - Winder Primary 115kV line overloads under contingency.



In-Service

2030

Year:

Project Name: KETTLE CREEK PRIMARY - PINE GROVE PRIMARY 115KV REBUILD

Description: Rebuild approximately 38.04 miles of the Kettle Creek - Pine Grove Primary 115kV line.

Supporting

Kettle Creek - Pine Grove 115kV line overloads under contingency.

Statement:

In-Service

2030

Year: Project Name:

**MEAG: ATHENA - WARRENTON 230KV CONVERSION** 

Description: C

Convert the 115kV lines from Athena - Union Point - Ray Place Road - Warrenton

Primary to 230kV operation. Replace limiting equipment along the lines.

Supporting

Statement:

Ray Place Road - Warrenton 115kV overloads under contingency.

In-Service

2030

Year:

Project Name: **NEW CAVENDER DRIVE - TRIBUTARY 230KV LINE** 

Description:

Build a new 5 mile 230kV line from Cavender Drive to Tributary.

Supporting

Statement:

The project will address multiple thermal overloads that occur under contingency.



In-Service

2030

Year:

Project Name: NORTH GEORGIA DATA NETWORK UPGRADES (GPC)

Description: Construct approximately 7 miles of 115kV line on the North Jackson - Lawrence Smith

46kV ROW that is to be retired.

Supporting

The future Banks Crossing - Pond Fork 115kV line overloads under contingency.

Statement:

In-Service

Year:

Project Name: NORTH SPA 230KV STRATEGIC PROJECT

Description: This project includes the following scope of work:

Build a new 230kV switching station north of Oasis in a ring bus configuration with 4 -

breakers.

2030

Loop in the East Social Circle - Oasis (White) 230kV line. Build a new 230kV line to Cornish Mountain from North Spa.

New 230kV line from Rockville 230kV will terminate in this station.

Supporting This projects addresses thermal constraints in the 230kV system of the area and

Statement: provides additional operational and maintenance flexibility, which increases reliability.

In-Service 2030

Year:

Project Name: TALLULAH LODGE - TOCCOA 115KV LINE REBUILD

Description: Rebuild the entire Tallulah Lodge - Toccoa 115kV line, approximately 10.3 miles.

Replace limiting elements in substations along the line.

Supporting The Tallulah Lodge - Toccoa 115kV line overloads under contingency.



In-Service

2030

Year:

Project Name: THOMASTON 230KV NEW BUILD SUBSTATION

Description: Replace both Thomaston 230/115kV auto transformers C and D. Install new 230kV

breakers for modern protection and reconfigure the station for better reliability.

Supporting With certain contingencies, Thomaston 203/115kV auto transformers C and D will

Statement: overload past their ratings. New station configuration is necessary to maintain reliability

for system demands.

In-Service

2030

Year:

Project Name:

THOMSON PRIMARY 230/115KV SECOND TRANSFORMER

Description: Install a second 230/115kV auto transformer at Thomson Primary substation.

Supporting This project addresses overloads under contingency on the Thomson Primary 230/115

Statement: kV auto transformer and the Evans Primary - Thomson Primary 115kV line.

In-Service

2030

Year:

Project Name: TRIBUTARY - THORNTON RD 230KV REBUILD

Description: Rebuild the 2.8 mile Tributary - Thornton Road 230kV line with higher capability

conductors

Supporting

The Tributary - Thornton Road line overloads under contingency.



In-Service

2031

Year:

Project Name: ALBERTA CITY - HOLT 115 KV TL RECONDUCTOR

Description: Reconductor approximately 4 miles of 795 ACSR at 100°C on the Alberta City - Holt 115

kV transmission line to 795 ACSS at 200°C.

Supporting Statement:

Provides additional operational and maintenance flexibility, which increases reliability.

In-Service

2031

Year:

Project Name: ALEX CITY AREA SOLUTION

Description: Construct new West Alex City SS. Construct new West Dadeville TS networking Alex City,

Crooked Creek – Martin Dam No. 2, and Thweatt. Reconductor approximately 4.52 miles

from new West Alex City SS to City of Alex City #3 with 795 45/7 ACSR at 100°C

Supporting

Provides additional operational and maintenance flexibility, which increases reliability.

Statement:

In-Service 2031

Year:

Project Name: ANNISTON - CROOKED CREEK 115 KV TL

Description: Reconductor approximately 28 miles of 397 30/7 ACSR to 795 26/7 ACSR from Golden

Springs DS to Crooked Creek TS 115 kV transmission line

Supporting Provides additional operational and maintenance flexibility, which increases reliability. In

Statement: addition, the line is being reconductored due to the age and condition of the structures

and conductor.



In-Service

2031

Year:

**AVERY - HOPEWELL 115KV RECONDUCTOR** Project Name:

Description: Reconductor approximately 3.3 miles of the Avery - Hopewell 115kV line. Replace

substation equipment along the section of the line.

Supporting

The Avery - Hopewell 115kV line overloads under contingency.

Statement:

In-Service

2031

Year:

Project Name: **BESSEMER - EAST PELHAM 230 KV TRANSMISSION LINE** 

Description: Upgrade approximately 14.9 miles of 1033 45/7 ACSR from 75°C to 100°C from

Bessemer TS to East Pelham TS.

Supporting Statement: Provides additional operational and maintenance flexibility, which increases reliability.

In-Service

2031

Year:

Project Name: **BOWEN #10 500/230KV AUTOBANK REPLACEMENT** 

Description: Replace the existing Bowen #10 500/230kV auto transformer with a higher rated

500/230kV auto transformer.

Supporting

The Bowen #10 500/230kV auto transformer overloads under contingency.



In-Service

2031

Year:

Project Name:

**CALVERT – WEST MCINTOSH 230 KV TRANSMISSION LINE** 

Description:

Reconductor approximately 11 miles of 1351 ACSR 54/19 100C to 1351 ACSS 200C from

Calvert SS - West McIntosh

Supporting

The Calvert - West McIntosh 230 kV transmission line overloads under contingency.

Statement:

In-Service

2031

2031

Year:

Project Name: CORNELIA - TALLULAH LODGE 115KV REBUILD

Description:

Rebuild approximately 9.7 miles of the Cornelia - Tallulah Lodge 115kV line.

Supporting

The Cornelia - Tallulah Lodge 115kV line overloads under contingency.

Statement:

In-Service

Year:

Project Name:

**EAST POINT - UNION CITY (WHITE) 230KV REBUILD** 

Description:

Rebuild a section of the East Point - Union City 230kV line.

Supporting

The East Point - Union City 230kV line overloads under contingency.



In-Service

2031

Year:

Project Name: GREENVILLE AREA SOLUTION

Description: Construct 230 kV ring bus at Greenville TS

Supporting Provides addition

Statement:

Provides additional operational and maintenance flexibility, which increases reliability.

In-Service

2031

Year:

Project Name: HATCH - WADLEY 500 KV LINE STRATEGIC PROJECT

Description: Construct a new-65 mile, 500kV line from Hatch to Wadley Primary.

Supporting The new Hatch - Wadley Primary 500kV Line addresses the increasing penetration of

Statement: renewable generation plants and load growth.

In-Service

2031

Year: Project Name:

**MEAG: PIO NONO 230/115KV AREA SOLUTION** 

Description: Build the Pio Nono 4 - breaker 230kV ring bus to terminate lines from Dorsett, South

Griffin, and Pitts. Install a 400MVA auto transformer and build a 115kV yard to

terminate a line from Broadway. Make all necessary modifications to accommodate all

the 230kV and 115kV lines terminations.

Supporting Statement:

This project addresses reduces multiple 230 kV line loadings, resolves 115kV overloads

and provides additional operational and maintenance flexibility, which increases

reliability.



In-Service

2031

Year:

Project Name: PLANT SWEATT – NEWTON 115 KV TRANSMISSION LINE REBUILD

Description: Rebuild approximately 19.5 mile, 115 kV transmission line segments between EMEPA's

Lost Gap tap and Newton substations with 1033 ACSR at 100°C.

Supporting

The Plant Sweatt to Newton 115 kV overloads under contingency.

Statement:

In-Service

2031

Year:

Project Name: UNION SPRINGS - PINCKARD 115 KV TRANSMISSION LINE

Description: Rebuild approximately 10.6 miles of 397 ACSR of the Pinckard – Ewell SS 115 kV TL from

397 ACSR at 49°C to 795 ACSS at 200°C. Reconductor approximately 50 miles of 397

ACSR at 49°C Union Springs – Ewell 115 kV TL to 795 ACSS at 200°C

Supporting

The Union Springs - Pinckard 115 kV TL overloads under contingency.

Statement:

In-Service 2032

Year:

Project Name: COLEMAN - MELDRIM 115KV LINE REBUILD

Description: Rebuild approximately 3 miles of the Coleman - Meldrim 115kV line.

Supporting The Coleman - Meldrim 115kV line overloads under contingency.



In-Service

2032

Year:

Project Name: MEAG: SOUTH GRIFFIN 230/115KV BANK #5

Description: Replace the 230/115kV auto transformer with larger rated auto transformer at South

Griffin

Supporting

The South Griffin 230/115kV auto transformer exceeds its rating under contingency.

Statement:

In-Service

2032

Year:

Project Name: PELL CITY AREA SOLUTION

Description: Construct new Pell City Industrial Park SS and new approximately 12 mile 115 kV TL from

Pell City Industrial Park SS – Jackson Shoals TS utilizing 795 26/7 ACSR @ 100°C. Convert

East Pell City DS and 25th Street DS to 115 kV

Supporting Low voltage and thermal constraints in the area under contingency. This project

Statement: provides additional operational and maintenance flexibility, which increases reliability.

In-Service

2032

Year:

Project Name: WESTERN AREA SOLUTION

Description: Construct ~55 miles of new 230 kV TL of bundled (2) 1351 ACSR or equivalent from

Greene Co to North Selma and ~25 miles from North Selma to a new South Billingsley

230 kV SS.

Supporting The Greene County - North Selma 230 kV transmission line overloads under contingency.

Statement: Reduces multiple 115 kV and 230 kV line loadings and provides additional operational

and maintenance flexibility, which increases reliability.



In-Service

2033

Year:

Project Name: ARKWRIGHT BUS AND JUMPER REPLACEMENT

Description: Replace the 115kV bus at Arkwright and replace limiting element on the Arkwright -

Forrest Rd (Macon) 115kV line.

Supporting

The Arkwright - Forrest Road (Macon) 115kV line overloads under contingency.

Statement:

In-Service

Year:

2033

Project Name:

**BAY CREEK - CONYERS 230KV LIMITING ELEMENT REPLACEMENT** 

Description: Replace the limiting elements along the Bay Creek - Conyers 230kV line.

Supporting

The Bay Creek - Conyers 230kV line will overload under certain contingency.

Statement:

In-Service

2033

Year:

Project Name: EVANS PRIMARY - THURMOND DAM (USA) #5 115KV REBUILD

Description: Rebuild approximately 5.45 miles of the Evans Primary - Thurmond Dam (USA) #5 115kV

line. Replace limiting element on the line at Thurmond Dam (USA).

Supporting

The Evans Primary - Thurmond Dam (USA) #5 115kV line overloads under contingency.



In-Service

2033

Year:

**EVANS PRIMARY - THURMOND DAM (USA) #6 115KV REBUILD** Project Name:

Description: Rebuild approximately 8.9 miles of the Evans Primary - Thurmond Dam (USA) #6 115kV

line. Replace limiting element on the line at Thurmond Dam (USA).

Supporting

The Evans Primary - Thurmond Dam (USA) #6 115kV line overloads under contingency.

Statement:

In-Service

2033

Year: Project Name:

GTC: CENTER PRIMARY - CLARKSBORO 230 KV REBUILD

Description: Rebuild the Center Primary - Clarksboro Primary 230kV line (approx. 8.3 miles).

The Center Primary - Clarksboro 230kV line overloads under contingency. Supporting

Statement:

In-Service 2033

Year:

GTC: CLARKSBORO - WINDER PRIMARY 230KV REBUILD Project Name:

Description: Rebuild approximately 14 miles of the Clarksboro - Winder 230kV line.

Supporting

Statement:

The Clarksboro - Winder 230kV line overloads under contingency.



In-Service

2033

Year:

Project Name: GTC: EAST SOCIAL CIRCLE - SNELLVILLE 230KV EQUIPMENT REPLACEMENT

Description: Replace limiting equipment on the East Social Circle - Snellville 230kV line.

Supporting Equipment on the East Social Circle - Snellville 230kV line overloads under contingency.

Statement:

In-Service

Project Name:

2033

Year:

GTC: EAST WALTON - MIDDLE FORK 500KV

Description: Construct a new 500kV line from East Walton to Middle Fork, approximately 45 miles

long. Make all necessary accommodations for new 500kV breakers at East Walton and

Middle Fork substations.

Supporting This project reduces multiple 230 kV line loadings, and provides additional operational

Statement: and maintenance flexibility, which increases reliability.

In-Service

2033

Year:

Project Name: GTC: SHOAL CREEK - SOUTH HALL 230KV REBUILD

Description: Rebuild approximately 7.9 miles of the Shoal Creek - South Hall 230kV line. Upgrade

limiting elements on the line.

Supporting

Statement:

The Shoal Creek - South Hall 230kV line overloads under contingency.



In-Service

2033

2033

Year:

Project Name: MCEVER ROAD - SHOAL CREEK 115KV REBUILD PHASE III

Description: Rebuild approximately 2.9 miles of the McEver Road - Shoal Creek 115kV line.

Supporting

The McEver Road - Shoal Creek 115kV line overloads under contingency.

Statement:

In-Service

Year:

Project Name: MCGRAU FORD - MIDDLE FORK 500KV LINE PROJECT

Description: Construct a new 500kV line from McGrau Ford to Middle Fork and make necessary

modifications at McGrau Ford and Middle Fork to accommodate new line.

Supporting This is a strategic project to support the load growth in north Georgia and to transport

Statement: the expected generation additions in Northeast Georgia.

In-Service 2033

Year:

Project Name: MELDRIM BANK D REPLACEMENT

Description: Replace Meldrim 230/115kV auto transformer.

Supporting Meldrim 230/115kV auto transformer overloads under contingency.



In-Service

2033

Year:

Project Name:

PINE GROVE PRIMARY - WEST VALDOSTA 115 KV RECONDUCTOR

Description:

Rebuild approximately 3.7 miles of the Pine Grove Primary - West Valdosta 115kV

transmission line.

Supporting

The Pine Grove - West Valdosta 115kV line overloads under contingency.

Statement:

In-Service

2033

Year: Project Name:

WINDER PRIMARY 230KV BUS 1-2 PARALLEL BUS-TIE INSTALLATION

Description:

Install a 2nd bus - tie breaker at the Winder Primary substation.

Supporting

The Bay Creek - LGE Monroe 230kV line will overload under contingency.

Statement:

In-Service

2034

Year:

Project Name:

**DAWSON CROSSING - GAINESVILLE #1 115 KV** 

Description:

Replace the main bus at Gainesville #1 115kV with larger size.

Supporting

The main bus at Gainesville #1 115kV overloads under contingency.



In-Service 2034

Year:

Project Name: EVANS PRIMARY - THOMSON PRIMARY 115KV REBUILD

Description: Rebuild the Thomson Primary to Pumpkin Center 115kV line section of the Evans

Primary - Thomson Primary 115kV line.

Supporting The Thomson Primary to Pumpkin Center 115kV line section of the Evans Primary -

Statement: Thomson Primary 115kV line overloads under contingency.

In-Service 2034

Year:

Project Name: LITTLE OGEECHEE 230/115KV BANK REPLACEMENT

Description: Replace Little Ogeechee 230/115kV auto transformer.

Supporting Auto transformer at Little Ogeechee substation overloads under contingency.



In-Service 2025

Year:

Project Name: ALCOA SS – NIXON ROAD 161 KV TRANSMISSION LINE

Description: Rebuild approximately 12.0 miles of the Alcoa North – Nixon Road 161 kV transmission

line with 1590 ACSR at 100°C and construct approximately 4.0 miles of new transmission

line to create the Alcoa SS – Nixon Rd 161 kV #2 transmission line.

Supporting The Alcoa Switching Station – Nixon Road 161 kV transmission line overloads under

Statement: contingency.

In-Service

2025

Year:

Project Name: NORTH DAYTON 161 KV TRANSMISSION LINE

Description: Construct North Dayton 161 kV substation. Loop in Sequoyah - Watts Bar HP 161 kV

transmission line into new substation by constructing approximately 27.0 miles of

transmission line using 1351 ACSR.

Supporting Additional thermal capacity and voltage support is needed in the North Dayton, TN area

Statement: under contingency.

In-Service 2025

Year:

Project Name: TIPTONVILLE-NEW MADRID #2 TIE LINE

Description: Construct approximately 5.3 miles of new 161 kV transmission line from Tiptonville to

New Madrid to form the second circuit, and reconductor approximately 5.3 miles of the Tiptonville to New Madrid 161 kV #1 transmission line section with 1590 ACSS at 180°C.

Supporting

Additional thermal capacity on this path is needed.



In-Service

2025

Year:

Project Name: WILSON - LEBANON 161 KV TRANSMISSION LINE

Description: Rebuild approximately 6.0 miles on the Wilson - Lebanon 161 kV transmission line with

636 ACSR at 100°C and upgrade terminal equipment to 230 MVA at Lebanon 161 kV

substation.

Supporting Statement:

The Wilson - Lebanon 161 kV transmission line overloads under contingency.

In-Service

2026

Year:

Project Name: BRADLEY 500 KV SWITCH HOUSE

Description: Construct a new 500 kV switch house.

Supporting Additional thermal capacity and voltage support is needed in the Bradley County, TN

Statement: area under contingency.

In-Service

2026

Year:

Project Name: CUMBERLAND COMBINED CYCLE GENERATION INTERCONNECTION

Description: Construct new 500kV station to interconnect new natural gas fired CC generation. Loop

in two nearby 500kV TLs.

Supporting Scope is driven by the interconnection of new generation. This is Q483 in TVA's

Statement: Interconnection Queue which is publicly available on TVA's OASIS.



In-Service

2026

Year:

Project Name: **DICKSON 161 KV AREA IMPROVEMENT** 

Description: Construct new Locust Creek 161 kV substation. Construct approximately 9.5 miles of

> new 161 kV transmission line from Bon Aqua to Burns. Rebuild approximately 8 miles of 161 kV transmission line between Dickson and Ponoma tap. Build a new switch house at

Dickson.

Supporting Statement: Voltage support is needed in the Dickson, TN area under contingency.

In-Service

Year:

Project Name: **LOVING, KY 161KV STATION** 

2026

Description: Construct the Loving, KY 161kV Substation. Reconductor approximately 26.71 miles of

transmission line from Bowling Green to Lost City with 1351 ACSS at 140°C.

Reconductor approximately 8.64 miles of transmission line from Bowling Green to East

Bowling Green with 1351 ACSS at 135°C.

Supporting

Additional voltage support & thermal capacity is needed in the Bowling Green area for

Statement:

economic development.

In-Service

2026

Year:

Project Name: PHILADELPHIA REACTOR

Description: Install three 27MVAR reactors at the Philadelphia 161kV Substation.

Supporting

Voltage support is needed in TVA's Mississippi area under contingency.



In-Service

2027

Year:

Project Name: **BELMONT PHASE 2** 

Description: Construct approximately 18.0 miles of new 161 kV transmission line from Clay - Artesia

using 954 ACSR at 100°C

Supporting Voltage support and additional capacity is needed for economic development in the

Statement: TVA's Mississippi area

In-Service 2027

Year:

Project Name: CORDOVA - YUM YUM TL RECONDUCTOR

Description: Reconductor approximately 23.5 miles of the Cordova - Yum Yum 161 kV transmission

line section with TS - 1098.6 kcmil Ruddy, sag temp 180°C.

Supporting Additional thermal capacity is needed for economic development in the Memphis, TN

Statement: area

In-Service 2027

Year:

Project Name: HILLSBORO SOLAR GENERATION INTERCONNECTION

Description: Construct new 161kV station to interconnect new solar generation. Loop in an existing

161kV TL to the new station. Reconductor an existing TL.

Supporting Scope is driven by the interconnection of new generation. This is Q385 in TVA's

Statement: Interconnection Queue which is publicly available on TVA's OASIS.



In-Service 2027

Year:

Project Name: KINGSTON CC AND AERODERIVATIVE CT GENERATION INTERCONNECTION

Description: Construct new 161kV station to interconnect new natural gas fired CC and

Aeroderivative generation. Loop in area 161kV TLs. Upgrade fifteen existing 161kV TLs to

increase the thermal rating of each.

Supporting Scope is driven by the interconnection of new generation. This is Q489 in TVA's

Statement: Interconnection Queue which is publicly available on TVA's OASIS.

In-Service

2027

Year:

Project Name:

LAWRENCE COUNTY SOLAR GENERATION INTERCONNECTION

Description: Construct new 161kV station to interconnect new solar generation. Loop in an existing

161kV TL to the new station.

Supporting Scope is driven by the interconnection of new generation. This is Q405 in TVA's

Statement: Interconnection Queue which is publicly available on TVA's OASIS.

In-Service 2027

Year:

Project Name: LIMESTONE - SEWELL 161 KV #2 TRANSMISSION LINE

Description: Construct approximately 2.1 miles of 161 kV transmission line with 2034 ACSR at 100°C

on the existing Limestone - Sewell 161 kV double circuit towers and add breakers to the

161-kV switchyard to make a double breakered 161-kV station.

Supporting Additional thermal capacity and voltage support is needed in the Huntsville, AL area

Statement: under contingency.



In-Service 2027

Year:

Project Name:

NORMANDY LAKE TULLAHOMA SOLAR GENERATION INTERCONNECTION

Description: Construct new 161kV station to interconnect new solar generation. Loop in an existing

161kV TL to the new station.

Supporting Scope is driven by the interconnection of new generation. This is Q445 in TVA's

Statement: Interconnection Queue which is publicly available on TVA's OASIS.

In-Service

2027

Year:

Project Name:

**NORTH OAKLAND - COFFEEVILLE 161 KV TRANSMISSION LINE** 

Description: Construct approximately 18.0 miles of new 161 kV transmission line from North

Oakland - Coffeeville using 954 ACSR at 100°C and upgrade terminal equipment to 472

MVA at Batesville 161 kV substation.

Supporting

Statement:

Multiple 161 kV transmission lines overload under contingency.

In-Service

2027

Year:

Project Name:

ST. ELMO, KY 161 KY SUBSTATION

Description: Construct new 161kV substation. Loop in Edgoten-Casky 161kV transmission line

(approximately 0.6 miles from station to loop point). Loop in Paradise-Clarksville 161kV

transmission line (approximately 10 miles from station to loop point).

Supporting

Voltage support and additional capacity is needed for economic development in the

Statement:

Bowling Green area.



## SERTP TRANSMISSION PROJECTS TVA Balancing Authority Area

In-Service

2027

Year:

Project Name: TRIFECTA SOLAR GENERATION INTERCONNECTION

Description: Connect new generation via a new line tap on the Red Hills - Leake 161kV TL.

Supporting Scope is driven by the interconnection of new generation. This is Q522 in TVA's

Statement: Interconnection Queue which is publicly available on TVA's OASIS.

In-Service

2028

Year:

Project Name: DAVIDSON 500 KV SWITCH HOUSE

Description: Construct a new 500 kV switch house with all new assets and replace aging assets in the

Davidson Yard.

Supporting Additional thermal capacity and voltage support is needed in the Davidson County, TN

Statement: area under contingency.

In-Service

2028

Year: Project Name:

HORUS SOLAR GENERATION INTERCONNECTION

Description: Connect new generation via a new line tap on the Franklin-Portland 161kV TL.

Supporting Scope is driven by the interconnection of new generation. This is Q388 in TVA's

Statement: Interconnection Queue which is publicly available on TVA's OASIS.



# SERTP TRANSMISSION PROJECTS TVA Balancing Authority Area

In-Service

2028

Year:

Project Name: LIMESTONE 500KV DOUBLE BREAKER AND LOOP

Description: Construct a double breaker station in the 500kV yard at Limestone and loop in the

Browns Ferry - Maury 500kV TL.

Supporting

The Trinity 500/161kV transformer overloads under contingency.

Statement:

In-Service

Year:

2028

2028

Project Name:

**MIDWAY - S MACON - DEKALB 161 KV TRANSMISSION LINE** 

Description: Construct approximately 20 miles new 161 kV transmission line from Midway to S

Macon and approximately 31.3 miles new 161 kV transmission line from S Macon to

Dekalb via Scooba.

Supporting

Voltage support is needed in TVA's Mississippi area under contingency.

Statement:

In-Service

Year:

Project Name: SPRING VALLEY SOLAR GENERATION INTERCONNECTION

Description: Construct new 161kV station to interconnect new solar generation. Loop in an existing

161kV TL to the new station. Reconductor an existing TL.

Supporting Scope is driven by the interconnection of new generation. This is Q387 in TVA's

Statement: Interconnection Queue which is publicly available on TVA's OASIS.



## SERTP TRANSMISSION PROJECTS TVA Balancing Authority Area

In-Service

2029

Year:

Project Name: APALACHIA AREA IMPROVEMENT PLAN

Description: Construct Martin's Creek 161 kV substation. Construct approximately 25 miles of new TL

from Apalachia 161 kV substation to Ranger 161 kV switching station.

Supporting

The Apalachia - Basin 161 kV transmission line overloads under contingency.

Statement:

In-Service

Year:

2030

Project Name:

**HAMPTON 500 KV STATION** 

Description: Construct new 500/161 kV Hampton station. Loop in existing Montgomery-Wilson

500kV line (approximately 0.1 mile from station to loop point). Loop in existing double

circuit 161kV from Montgomery to Hemlock.

Supporting Additional thermal capacity and voltage support is needed in the Montgomery County,

Statement: TN & Todd County, KY area under contingency.

In-Service

2030

Year:

Project Name: SEQUOYAH 500 KV SWITCH HOUSE

Description: Construct a new 500 kV switch house with new assets including breakers at the

Sequoyah 500 kV substation

Supporting Additional thermal capacity and voltage support is needed in the Hamilton County, TN

Statement: area under contingency.



#### VI. Appendix 1: AECI BAA

The following information provides a more granular overview of the AECI BAA input assumptions and transmission expansion plan that are incorporated in the development of the SERTP regional transmission plan.

Table A1.1: 2024 SERTP Regional Transmission Plan – Transmission Project Snapshot by operating voltage (AECI BAA)

| AECI BAA                                                | 100-120<br>kV | 121-150<br>kV | 151-199<br>kV | 200-299<br>kV | 300-399<br>kV | 400-550<br>kV |
|---------------------------------------------------------|---------------|---------------|---------------|---------------|---------------|---------------|
| Transmission lines – New (Circuit Mi.)                  |               |               |               |               |               |               |
| Transmission Lines – Uprates <sup>1</sup> (Circuit Mi.) |               |               | 64.87         |               |               |               |
| Transformers <sup>2</sup> – New                         |               |               |               |               |               |               |
| Transformers <sup>2</sup> – Replacements                |               |               |               |               |               |               |

<sup>1</sup> A transmission line uprate may be the result of reconductoring and/or increasing the operating temperature/voltage along the transmission line.

Table A1.2: Interface commitments<sup>1</sup> modeled in the SERTP Summer Peak models – AECI BAA

| То    | 2026  | 2029  | 2034  |
|-------|-------|-------|-------|
| SPP   | -623  | -623  | -623  |
| MISO  | -551  | -533  | -533  |
| Total | -1174 | -1156 | -1156 |

A positive number represents a net export from the AECI BAA.

<sup>&</sup>lt;sup>2</sup> The voltages shown represent the operating voltages on the high side terminals of the transformer.



A detailed listing of the changes in generation assumptions within the AECI BAA throughout the ten (10) year planning horizon, including the year(s) in which they occur, is provided in Table A1.3 below. Table A1.4 provides a listing of generation assumptions based upon long-term, firm point-to-point commitments. The capacity (MW) values shown for each year reflect summer peak conditions. Table A1.5 provides a listing of all generators modeled in the 2024 Version 3 Summer Peak power flow model.

Table A1.3: Changes in Generation Assumptions Based Upon LSEs – AECI BAA

| SITE | FUEL TYPE | 2025 | 2026 | 2027 | 2028 | 2029 | 2030 | 2031 | 2032 | 2033 | 2034 |
|------|-----------|------|------|------|------|------|------|------|------|------|------|
|      |           |      |      | None |      |      |      |      |      |      |      |

Table A1.4: Generation Assumptions Based Upon Expected Long-term, Firm Point-to-Point Commitments - AECI BAA

| 10101011111 | dener 6.01011 1 100 6.111 p 0.0110 2 6.00 | е орон ди | peece ze |      |      | 00 1 01110 |      | 01100 112 |      |      |
|-------------|-------------------------------------------|-----------|----------|------|------|------------|------|-----------|------|------|
| SITE        | 2025                                      | 2026      | 2027     | 2028 | 2029 | 2030       | 2031 | 2032      | 2033 | 2034 |
| None        |                                           |           |          |      |      |            |      |           |      |      |

Table A1.5: Generating Units Modeled in the 2024 Version 3 Summer Peak Power flow Model – AECI BAA

| Summer Peak 2026 & | 2034 Regional SER | TP V3 Models    |    | 20          | 026       | 20          | 034       |
|--------------------|-------------------|-----------------|----|-------------|-----------|-------------|-----------|
| Plant              | <b>Bus Number</b> | <b>Bus Name</b> | Id | Fuel Type   | Pmax (MW) | Fuel Type   | Pmax (MW) |
| Thomas Hill        | 300001            | 1THLG1          | 1  | Coal        | 177       | Coal        | 177       |
| Thomas Hill        | 300002            | 1THLG2          | 1  | Coal        | 285       | Coal        | 285       |
| Thomas Hill        | 300003            | 1THLG3          | 1  | Coal        | 747       | Coal        | 747       |
| New Madrid         | 300006            | 1NM G1          | 1  | Coal        | 624.3     | Coal        | 624.3     |
| New Madrid         | 300007            | 1NM G2          | 1  | Coal        | 607.6     | Coal        | 607.6     |
| Bluegrass Ridge    | 300008            | 1GNTRYG1        | 1  | Wind        | 56.7      | Wind        | 56.7      |
| Cow Branch         | 300009            | 1ACHSNG1        | 1  | Wind        | 50.4      | Wind        | 50.4      |
| St. Francis        | 300010            | 1STFRG1         | 1  | Natural Gas | 245       | Natural Gas | 245       |
| St. Francis        | 300011            | 1STFRG2         | 1  | Natural Gas | 225.9     | Natural Gas | 225.9     |
| Holden             | 300012            | 1HOLDNG11       | 1  | Natural Gas | 110.2     | Natural Gas | 110.2     |
| Holden             | 300013            | 1HOLDNG12       | 1  | Natural Gas | 110.2     | Natural Gas | 110.2     |
| Holden             | 300014            | 1HOLDNG13       | 1  | Natural Gas | 110.2     | Natural Gas | 110.2     |

| Summer Peak 2026 & | 2034 Regional SER | TP V3 Models    |    | 20          | 026       | 20          | 034       |
|--------------------|-------------------|-----------------|----|-------------|-----------|-------------|-----------|
| Plant              | <b>Bus Number</b> | <b>Bus Name</b> | Id | Fuel Type   | Pmax (MW) | Fuel Type   | Pmax (MW) |
| Chouteau           | 300020            | 1CHOTCT4        | 1  | Natural Gas | 172.3     | Natural Gas | 172.3     |
| Chouteau           | 300021            | 1CHOTCT5        | 1  | Natural Gas | 172.5     | Natural Gas | 172.5     |
| Chouteau           | 300024            | 1CHOTST6        | 1  | Natural Gas | 189.7     | Natural Gas | 189.7     |
| Nodaway            | 300025            | 1NDWYG1         | 1  | Natural Gas | 93.1      | Natural Gas | 93.1      |
| Nodaway            | 300026            | 1NDWYG2         | 1  | Natural Gas | 93.1      | Natural Gas | 93.1      |
| West Plains City   | 300027            | 1WPLCTG1        | 1  | Natural Gas | 22        | Natural Gas | 22        |
| West Plains City   | 300028            | 1WPLCTG2        | 1  | Natural Gas | 22        | Natural Gas | 22        |
| Essex              | 300029            | 1ESSEXG         | 1  | Natural Gas | 98.1      | Natural Gas | 98.1      |
| Chouteau           | 300031            | 1CHOTST3        | 1  | Natural Gas | 155       | Natural Gas | 155       |
| Chouteau           | 300032            | 1CHOTCT1        | 1  | Natural Gas | 153.3     | Natural Gas | 153.3     |
| Chouteau           | 300033            | 1CHOTCT2        | 1  | Natural Gas | 161.2     | Natural Gas | 161.2     |
| Conception         | 300273            | 1CLYDEG1        | 1  | Wind        | 50.4      | Wind        | 50.4      |
| Lost Creek         | 301358            | 1WINSLOWG1      | 1  | Wind        | 168       | Wind        | 168       |
| Osage              | 301382            | 10SAGEWINDG1    | 1  | Wind        | 150       | Wind        | 150       |
| Mt Pleasant        | 301449            | 2MTPLCTY        | 1  | Diesel      | 24        | Diesel      | 24        |
| White Cloud        | 301490            | 1WHITCLDG1      | 1  | Wind        | 214.5     | Wind        | 214.5     |
| Clear Creek        | 301493            | 1CLEARCKG1      | 1  | Wind        | 121       | Wind        | 121       |
| Clear Creek        | 301512            | 1CLEARCKG2      | 2  | Wind        | 99        | Wind        | 99        |
| White Cloud        | 301585            | 1WHITCLDG2      | 2  | Wind        | 22        | Wind        | 22        |
| Clear Creek        | 301619            | 1CLEARCKG3      | 3  | Wind        | 22        | Wind        | 22        |
| Dell               | 338341            | 1EAI DELLST3    | 1  | Natural Gas | 220.4     | Natural Gas | 220.4     |
| Dell               | 338342            | 1EAI DELLCT1    | 1  | Natural Gas | 181.6     | Natural Gas | 181.6     |
| Dell               | 338343            | 1EAI DELLCT2    | 1  | Natural Gas | 176.3     | Natural Gas | 176.3     |
| Unionville         | 300022            | 1UNION1         | 1  | Oil         | 22        | Oil         | 22        |
| Unionville         | 300023            | 1UNION2         | 1  | Oil         | 22        | Oil         | 22        |



### VII. Appendix 2: Duke Energy Carolinas BAA

The following information provides a more granular overview of the Duke Energy Carolinas BAA input assumptions and transmission expansion plan that are incorporated in the development of the SERTP regional transmission plan.

Table A2.1: 2024 SERTP Regional Transmission Plan – Transmission Project Snapshot by operating voltage (Duke Energy Carolinas BAA)

| Duko Energy Carolines BAA                               | 100-120 | 121-150 | 151-199 | 200-299 | 300-399 | 400-550 |
|---------------------------------------------------------|---------|---------|---------|---------|---------|---------|
| Duke Energy Carolinas BAA                               | kV      | kV      | kV      | kV      | kV      | kV      |
| Transmission lines – New (Circuit Mi.)                  | 13.2    |         |         | 33.5    |         |         |
| Transmission Lines – Uprates <sup>1</sup> (Circuit Mi.) | 285.5   |         |         | 30.2    |         |         |
| Transformers <sup>2</sup> – New                         |         |         |         | 1       |         |         |
| Transformers <sup>2</sup> – Replacements                |         |         |         | 8       |         |         |

<sup>1</sup> A transmission line uprate may be the result of reconductoring and/or increasing the operating temperature/voltage along the transmission line.

Table A2.2: Interface commitments<sup>1</sup> modeled in the SERTP Summer Peak models – Duke Energy Carolinas BAA

| То                 | 2026 | 2029 | 2034 |
|--------------------|------|------|------|
| Duke Progress East | 1888 | 1695 | 1499 |
| SCE&G              | 165  | 165  | 165  |
| SC                 | 44   | 36   | 22   |
| Southern           | 0    | 0    | 0    |
| PJM                | 100  | 100  | 100  |
| SEPA               | -309 | -309 | -309 |
| Total              | 1888 | 1687 | 1177 |

<sup>&</sup>lt;sup>1</sup> A positive number represents a net export from the Duke Energy Carolinas BAA.

<sup>&</sup>lt;sup>2</sup> The voltages shown represent the operating voltages on the high side terminals of the transformer.



A detailed listing of the changes in generation assumptions within the Duke Energy Carolinas BAA throughout the ten (10) year planning horizon, including the year(s) in which they occur, is provided in Table A2.3 below. Furthermore, supplemental information regarding noteworthy generation expansion and retirements/decertifications included in the 2024 series set of SERTP power flow models is provided below, while Table A2.4 provides a listing of generation assumptions based upon long-term, firm point-to-point commitments. The capacity (MW) values shown for each year reflect summer peak conditions. Table A2.5 provides a listing of all generators modeled in the 2024 Version 3 Summer Peak power flow model.

Table A2.3: Changes in Generation Assumptions Based Upon LSEs – Duke Energy Carolinas BAA

| SITE                           | FUEL TYPE               | 2025 | 2026 | 2027 | 2028 | 2029 | 2030 | 2031 | 2032 | 2033 | 2034 |
|--------------------------------|-------------------------|------|------|------|------|------|------|------|------|------|------|
| Allen 1                        | Coal                    | 0    |      |      |      |      |      |      |      |      |      |
| Allen 1 BESS GRR               | Storage                 |      |      |      | 167  | 167  | 167  | 167  | 167  | 167  | 167  |
| Allen 5                        | Coal                    | 0    |      |      |      |      |      |      |      |      |      |
| Cliffside 5                    | Coal                    | 574  | 574  | 574  | 574  | 574  | 574  | 0    |      |      |      |
| Cliffside 5 Proxy <sup>1</sup> | Proxy Generation        |      |      |      |      |      |      | 574  | 574  | 574  | 574  |
| Lincoln 17                     | Natural Gas             | 402  | 402  | 402  | 402  | 402  | 402  | 402  | 402  | 402  | 402  |
| Marshall 1                     | Coal                    | 388  | 388  | 388  | 388  | 0    |      |      |      |      |      |
| Marshall 1 Replacement         | Natural Gas             |      |      |      |      | 388  | 388  | 388  | 388  | 388  | 388  |
| Marshall 2                     | Coal                    | 392  | 392  | 392  | 392  | 0    |      |      |      |      |      |
| Marshall 2 Replacement         | Natural Gas             |      |      |      |      | 392  | 392  | 392  | 392  | 392  | 392  |
| Marshall 3                     | Coal                    | 705  | 705  | 705  | 705  | 705  | 705  | 705  | 0    |      |      |
| Marshall 3 Proxy <sup>1</sup>  | <b>Proxy Generation</b> |      |      |      |      |      |      |      | 705  | 705  | 705  |
| Marshall 4                     | Coal                    | 711  | 711  | 711  | 711  | 711  | 711  | 711  | 0    |      |      |
| Marshall 4 Proxy <sup>1</sup>  | <b>Proxy Generation</b> |      |      |      |      |      |      |      | 711  | 711  | 711  |
| Monroe Solar BESS <sup>2</sup> | Storage                 | 25   | 25   | 25   | 25   | 25   | 25   | 25   | 25   | 25   | 25   |
| Allen BESS                     | Storage                 |      | 50   | 50   | 50   | 50   | 50   | 50   | 50   | 50   | 50   |
| Riverbend BESS                 | Storage                 |      |      |      | 115  | 115  | 115  | 115  | 115  | 115  | 115  |
| Bad Creek 4                    | Pumped Storage          | 420  | 420  | 420  | 420  | 420  | 420  | 420  | 420  | 420  | 420  |
| Bad Creek II 1                 | Pumped Storage          |      |      |      |      |      |      |      |      |      | 420  |

| SITE            | FUEL TYPE      | 2025 | 2026 | 2027 | 2028  | 2029  | 2030  | 2031  | 2032  | 2033  | 2034  |
|-----------------|----------------|------|------|------|-------|-------|-------|-------|-------|-------|-------|
| Bad Creek II 2  | Pumped Storage |      |      |      |       |       |       |       |       |       | 420   |
| Bad Creek II 3  | Pumped Storage |      |      |      |       |       |       |       |       |       | 420   |
| Bad Creek II 4  | Pumped Storage |      |      |      |       |       |       |       |       |       | 420   |
| Apex            | Solar          | 28.9 | 28.9 | 28.9 | 28.9  | 28.9  | 28.9  | 28.9  | 28.9  | 28.9  | 28.9  |
| Misenheimer     | Solar          | 74.4 | 74.4 | 74.4 | 74.4  | 74.4  | 74.4  | 74.4  | 74.4  | 74.4  | 74.4  |
| Pelham          | Solar          | 32   | 32   | 32   | 32    | 32    | 32    | 32    | 32    | 32    | 32    |
| Two Hearted     | Solar          | 22   | 22   | 22   | 22    | 22    | 22    | 22    | 22    | 22    | 22    |
| West River      | Solar          | 40   | 40   | 40   | 40    | 40    | 40    | 40    | 40    | 40    | 40    |
| Bear Branch     | Solar          |      | 34.5 | 34.5 | 34.5  | 34.5  | 34.5  | 34.5  | 34.5  | 34.5  | 34.5  |
| Beaverdam       | Solar          |      | 42   | 42   | 42    | 42    | 42    | 42    | 42    | 42    | 42    |
| Hornet          | Solar          |      | 73   | 73   | 73    | 73    | 73    | 73    | 73    | 73    | 73    |
| Newberry        | Solar          |      | 74.5 | 74.5 | 74.5  | 74.5  | 74.5  | 74.5  | 74.5  | 74.5  | 74.5  |
| Quail           | Solar          |      | 30   | 30   | 30    | 30    | 30    | 30    | 30    | 30    | 30    |
| Westminster     | Solar          |      | 70   | 70   | 70    | 70    | 70    | 70    | 70    | 70    | 70    |
| Brookcliff      | Solar          |      |      | 50   | 50    | 50    | 50    | 50    | 50    | 50    | 50    |
| Healing Springs | Solar          |      |      | 55   | 55    | 55    | 55    | 55    | 55    | 55    | 55    |
| South Davidson  | Solar          |      |      | 80   | 80    | 80    | 80    | 80    | 80    | 80    | 80    |
| Quaker Creek    | Solar          |      |      | 35   | 35    | 35    | 35    | 35    | 35    | 35    | 35    |
| Sweetwater      | Solar          |      |      | 34   | 34    | 34    | 34    | 34    | 34    | 34    | 34    |
| Joanna White    | Solar          |      |      | 37.5 | 37.5  | 37.5  | 37.5  | 37.5  | 37.5  | 37.5  | 37.5  |
| Rutabaga        | Solar          |      |      |      | 69.75 | 69.75 | 69.75 | 69.75 | 69.75 | 69.75 | 69.75 |
| Bear Claw       | Solar          |      |      |      | 28.25 | 28.25 | 28.25 | 28.25 | 28.25 | 28.25 | 28.25 |
| Yorkshire       | Solar          |      |      |      |       |       |       | 45    | 45    | 45    | 45    |
| Hudson Place    | Solar          |      |      |      |       |       |       | 70.7  | 70.7  | 70.7  | 70.7  |
| Five Circles    | Solar          |      |      |      |       |       |       | 74.9  | 74.9  | 74.9  | 74.9  |

<sup>&</sup>lt;sup>1</sup> Generators left in model in expectation of replacement generation through the Generation Replacement Request process.

<sup>&</sup>lt;sup>2</sup> Output of Monroe Solar is not changing, only adding storage. Impacts the generation output for winter models.



Table A2.4: Generation Assumptions Based Upon Expected Long-term, Firm Point-to-Duke Energy Carolinas BAA

Point Commitments -

| SITE           | 2025 | 2026 | 2027 | 2028 | 2029 | 2030 | 2031 | 2032 | 2033 | 2034 |
|----------------|------|------|------|------|------|------|------|------|------|------|
| Cleveland      | 195  | 195  | 195  | 196  | 196  | 196  | 196  | 196  | 196  | 196  |
| Broad River    | 925  | 925  | 925  | 925  | 925  | 925  | 925  | 925  | 925  | 925  |
| Catawba        | 407  | 407  | 407  | 407  | 407  | 407  | 407  | 407  | 407  | 407  |
| Rowan          | 428  | 373  | 376  | 370  | 180  | 180  | 180  | 180  | 180  | 180  |
| Kings Mountain | 92   | 92   | 92   | 92   | 92   | 92   | 92   | 92   | 92   | 92   |

Table A2.5: Generating Units Modeled in the 2024 Version 3 Summer Peak Power flow Model – Duke Energy Carolinas BAA

| Summer Peak 2026 & | 2034 Regional SER | TP V3 Models     |    | 202          | 6         | 203          | 84        |
|--------------------|-------------------|------------------|----|--------------|-----------|--------------|-----------|
| Plant              | <b>Bus Number</b> | Bus Name         | Id | Fuel Type    | Pmax (MW) | Fuel Type    | Pmax (MW) |
| Mill Creek         | 306082            | 1MILLCKG1 13.800 | 1  | GAS          | 76        | GAS          | 76        |
| Mill Creek         | 306083            | 1MILLCKG2 13.800 | 2  | GAS          | 76        | GAS          | 76        |
| Mill Creek         | 306084            | 1MILLCKG3 13.800 | 3  | GAS          | 76        | GAS          | 76        |
| Mill Creek         | 306086            | 1MILLCKG4 13.800 | 4  | GAS          | 76        | GAS          | 76        |
| Mill Creek         | 306087            | 1MILLCKG5 13.800 | 5  | GAS          | 76        | GAS          | 76        |
| Mill Creek         | 306088            | 1MILLCKG6 13.800 | 6  | GAS          | 76        | GAS          | 76        |
| Mill Creek         | 306090            | 1MILLCKG7 13.800 | 7  | GAS          | 76        | GAS          | 76        |
| Mill Creek         | 306091            | 1MILLCKG8 13.800 | 8  | GAS          | 76        | GAS          | 76        |
| Apex               | 309803            | 1APEXPV 44.000   | PV | Solar        | 28.9      | Solar        | 28.9      |
| Bad Creek          | 306207            | 1BADCRK12 19.000 | 1  | Pumped Hydro | 420       | Pumped Hydro | 420       |
| Bad Creek          | 306207            | 1BADCRK12 19.000 | 2  | Pumped Hydro | 420       | Pumped Hydro | 420       |
| Bad Creek          | 306208            | 1BADCRK34 19.000 | 3  | Pumped Hydro | 420       | Pumped Hydro | 420       |
| Bad Creek          | 306208            | 1BADCRK34 19.000 | 4  | Pumped Hydro | 420       | Pumped Hydro | 420       |
| Broad River Energy | 306222            | 1BRECG4 18.000   | 4  | GAS          | 177       | GAS          | 177       |
| Broad River Energy | 306224            | 1BRECG5 18.000   | 5  | GAS          | 177       | GAS          | 177       |
| Broad River Energy | 306314            | 1BRECG1 18.000   | 1  | GAS          | 177       | GAS          | 177       |
| Broad River Energy | 306315            | 1BRECG2 18.000   | 2  | GAS          | 177       | GAS          | 177       |
| Broad River Energy | 306316            | 1BRECG3 18.000   | 3  | GAS          | 177       | GAS          | 177       |

| Summer Peak 2026 & 2 | 034 Regional SER  | TP V3 Models      |    | 20        | )26       | 20        | 34        |
|----------------------|-------------------|-------------------|----|-----------|-----------|-----------|-----------|
| Plant                | <b>Bus Number</b> | <b>Bus Name</b>   | Id | Fuel Type | Pmax (MW) | Fuel Type | Pmax (MW) |
| Cherokee             | 306325            | 1CHEROKEG 13.800  | 1  | GAS       | 52        | GAS       | 52        |
| Cherokee             | 306326            | 1CHEROKES 13.800  | 1  | GAS       | 32        | GAS       | 32        |
| Lincoln              | 306509            | 1LINCLN1 13.800   | 1  | GAS       | 79        | GAS       | 79        |
| Lincoln              | 306510            | 1LINCLN2 13.800   | 2  | GAS       | 79        | GAS       | 79        |
| Lincoln              | 306511            | 1LINCLN3 13.800   | 3  | GAS       | 79        | GAS       | 79        |
| Lincoln              | 306512            | 1LINCLN4 13.800   | 4  | GAS       | 79        | GAS       | 79        |
| Lincoln              | 306513            | 1LINCLN5 13.800   | 5  | GAS       | 79        | GAS       | 79        |
| Lincoln              | 306514            | 1LINCLN6 13.800   | 6  | GAS       | 79        | GAS       | 79        |
| Lincoln              | 306515            | 1LINCLN7 13.800   | 7  | GAS       | 79        | GAS       | 79        |
| Lincoln              | 306516            | 1LINCLN8 13.800   | 8  | GAS       | 79        | GAS       | 79        |
| Lincoln              | 306517            | 1LINCLN9 13.800   | 9  | GAS       | 79        | GAS       | 79        |
| Lincoln              | 306518            | 1LINCLN10 13.800  | Α  | GAS       | 79        | GAS       | 79        |
| Lincoln              | 306519            | 1LINCLN11 13.800  | В  | GAS       | 79        | GAS       | 79        |
| Lincoln              | 306520            | 1LINCLN12 13.800  | С  | GAS       | 79        | GAS       | 79        |
| Lincoln              | 306521            | 1LINCLN13 13.800  | D  | GAS       | 79        | GAS       | 79        |
| Lincoln              | 306522            | 1LINCLN14 13.800  | Е  | GAS       | 79        | GAS       | 79        |
| Lincoln              | 306523            | 1LINCLN15 13.800  | F  | GAS       | 79        | GAS       | 79        |
| Lincoln              | 306524            | 1LINCLN16 13.800  | G  | GAS       | 79        | GAS       | 79        |
| Rockingham County    | 306828            | 1ROCKHMG04 18.000 | 4  | GAS       | 165       | GAS       | 165       |
| Rockingham County    | 306829            | 1ROCKHMG05 18.000 | 5  | GAS       | 165       | GAS       | 165       |
| Rockingham County    | 306831            | 1ROCKHMG01 18.000 | 1  | GAS       | 165       | GAS       | 165       |
| Rockingham County    | 306832            | 1ROCKHMG02 18.000 | 2  | GAS       | 165       | GAS       | 165       |
| Rockingham County    | 306833            | 1ROCKHMG03 18.000 | 3  | GAS       | 165       | GAS       | 165       |
| Apple 3              | 308387            | APPLEPV3 100.00   | PV | Solar     | 16.2      | Solar     | 16.2      |
| Rowan                | 306991            | 1ROWANC1 18.000   | 1  | GAS       | 154       | GAS       | 154       |
| Rowan                | 306992            | 1ROWANC2 18.000   | 2  | GAS       | 154       | GAS       | 154       |
| Rowan                | 306993            | 1ROWANC3 18.000   | 3  | GAS       | 154       | GAS       | 154       |
| Rowan                | 306994            | 1ROWANC4 18.000   | 4  | GAS       | 154       | GAS       | 154       |

| Summer Peak 2026 8 | k 2034 Regional SER | RTP V3 Models      |    | 202                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 26        | 203          | 34        |
|--------------------|---------------------|--------------------|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|--------------|-----------|
| Plant              | <b>Bus Number</b>   | Bus Name           | Id | Fuel Type                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Pmax (MW) | Fuel Type    | Pmax (MW) |
| Rowan              | 306995              | 1ROWANC5 18.000    | 5  | GAS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 154       | GAS          | 154       |
| Rowan              | 306996              | 1ROWANS1 18.000    | 6  | GAS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 170       | GAS          | 170       |
| Buzzard Roost      | 307037              | 1BUZZHYD 4.1600    | 1  | Hydro                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 4.3       | Hydro        | 4.3       |
| Buzzard Roost      | 307037              | 1BUZZHYD 4.1600    | 2  | Hydro                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 4.3       | Hydro        | 4.3       |
| Buzzard Roost      | 307037              | 1BUZZHYD 4.1600    | 3  | Hydro                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 4.3       | Hydro        | 4.3       |
| Keowee             | 307195              | 1KEOWEE 13.800     | 1  | Hydro                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 80        | Hydro        | 80        |
| Lee                | 307198              | 1LEE CT7 13.800    | 7  | GAS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 43        | GAS          | 43        |
| Oconee             | 307199              | 10CONEE1 19.000    | 1  | Nuclear                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 878       | Nuclear      | 878       |
| Oconee             | 307200              | 10CONEE3 19.000    | 3  | Nuclear                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 878       | Nuclear      | 878       |
| Oconee             | 307210              | 10CONEE2 19.000    | 2  | Nuclear                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 878       | Nuclear      | 878       |
| Jocassee           | 307370              | 1JOCASSE1 14.400   | 1  | Pumped Hydro                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 195       | Pumped Hydro | 195       |
| Jocassee           | 307371              | 1JOCASSE2 14.400   | 2  | Pumped Hydro                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 195       | Pumped Hydro | 195       |
| Jocassee           | 307372              | 1JOCASSE3 14.400   | 3  | Pumped Hydro                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 195       | Pumped Hydro | 195       |
| Jocassee           | 307373              | 1JOCASSE4 14.400   | 4  | Pumped Hydro                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 195       | Pumped Hydro | 195       |
| Gaston Shoals      | 307466              | 1GAST HY 2.4000    | 1  | Hydro                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 5.7       | Hydro        | 5.7       |
| Apple 2            | 308391              | APPLEPV2 100.00    | PV | Solar                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 20        | Solar        | 20        |
| Turner             | 307599              | 1TURN HY 2.4000    | 1  | Hydro                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1.5       | Hydro        | 1.5       |
| Turner             | 307599              | 1TURN HY 2.4000    | 2  | Hydro                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1.5       | Hydro        | 1.5       |
| Tuxedo             | 307601              | 1TUX HYD 6.6000    | 1  | Hydro                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 3.2       | Hydro        | 3.2       |
| Tuxedo             | 307601              | 1TUX HYD 6.6000    | 2  | Hydro                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 3.2       | Hydro        | 3.2       |
| Cliffside          | 307610              | 1CLIFSID5 24.000   | 5  | Coal                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 574       | Coal/Gas     | 574       |
| Ayrshire           | 308375              | 1AYRSHIRE 44.000   | PV | Solar                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 16.8      | Solar        | 16.8      |
| Monroe             | 307614              | MONROEPV 100.00    | ВТ | Battery                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 25        | Battery      | 25        |
| Bear Branch        | 309860              | 1BEARBRNCHPV44.000 | PV | Solar                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 34.5      | Solar        | 34.5      |
| Great Falls        | 307702              | 1GTFALLS 2.4000    | 1  | Hydro                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 3         | Hydro        | 3         |
| Great Falls        | 307702              | 1GTFALLS 2.4000    | 2  | Hydro                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 3         | Hydro        | 3         |
| Great Falls        | 307702              | 1GTFALLS 2.4000    | 5  | Hydro                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 3         | Hydro        | 3         |
| Great Falls        | 307702              | 1GTFALLS 2.4000    | 6  | Hydro                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 3         | Hydro        | 3         |
|                    |                     |                    |    | <ul> <li>Control of the control of the control</li></ul> |           | •            |           |

| Summer Peak 2026 & 2 | 2034 Regional SEF | RTP V3 Models    |    | 20        | 26        | 20        | )34       |
|----------------------|-------------------|------------------|----|-----------|-----------|-----------|-----------|
| Plant                | <b>Bus Number</b> | Bus Name         | Id | Fuel Type | Pmax (MW) | Fuel Type | Pmax (MW) |
| Ninety-Nine Islands  | 307749            | 1NINETY9 2.2000  | 1  | Hydro     | 15        | Hydro     | 15        |
| Wylie                | 307840            | 1WYLIE H 6.6000  | 1  | Hydro     | 18        | Hydro     | 18        |
| Wylie                | 307840            | 1WYLIE H 6.6000  | 2  | Hydro     | 18        | Hydro     | 18        |
| Wylie                | 307840            | 1WYLIE H 6.6000  | 3  | Hydro     | 18        | Hydro     | 18        |
| Wylie                | 307840            | 1WYLIE H 6.6000  | 4  | Hydro     | 18        | Hydro     | 18        |
| Allen                | 307853            | 1ALLEN 5 100.00  | 5  | Coal      | 259       | Coal      | 259       |
| Allen                | 307854            | 1ALLEN 1 100.00  | 1  | Coal      | 167       | Coal      | 167       |
| Catawba              | 307856            | 1CATAWBA1 22.000 | 1  | Nuclear   | 1188      | Nuclear   | 1188      |
| Catawba              | 307857            | 1CATAWBA2 22.000 | 2  | Nuclear   | 1169      | Nuclear   | 1169      |
| Cedar Creek          | 307858            | 1CEDAR CK 6.6000 | 1  | Hydro     | 13        | Hydro     | 13        |
| Cedar Creek          | 307858            | 1CEDAR CK 6.6000 | 2  | Hydro     | 15        | Hydro     | 15        |
| Cedar Creek          | 307858            | 1CEDAR CK 6.6000 | 3  | Hydro     | 15        | Hydro     | 15        |
| Dearborn             | 307859            | 1DEARBN1 6.6000  | 1  | Hydro     | 14        | Hydro     | 14        |
| Dearborn             | 307860            | 1DEARBN23 6.6000 | 2  | Hydro     | 14        | Hydro     | 14        |
| Dearborn             | 307860            | 1DEARBN23 6.6000 | 3  | Hydro     | 14        | Hydro     | 14        |
| Fishing Creek        | 307861            | 1FISHNG C 6.6000 | 1  | Hydro     | 11        | Hydro     | 11        |
| Fishing Creek        | 307861            | 1FISHNG C 6.6000 | 2  | Hydro     | 9.5       | Hydro     | 9.5       |
| Lee                  | 307882            | 1LEE CT8 13.800  | 8  | Gas       | 43        | Gas       | 43        |
| Bridgewater          | 308079            | 1BRIDGEW 6.6000  | 1  | Hydro     | 15.5      | Hydro     | 15.5      |
| Lookout Tie          | 308080            | 1LOOKOUT 6.6000  | 1  | Hydro     | 9.33      | Hydro     | 9.33      |
| Lookout Tie          | 308080            | 1LOOKOUT 6.6000  | 2  | Hydro     | 9.33      | Hydro     | 9.33      |
| Lookout Tie          | 308080            | 1LOOKOUT 6.6000  | 3  | Hydro     | 9.33      | Hydro     | 9.33      |
| Marshall             | 308081            | 1MARSHAL1 20.000 | 1  | Coal      | 193       | GAS       | 387       |
| Marshall             | 308081            | 1MARSHAL1 20.000 | L  | Coal      | 195       |           |           |
| Marshall             | 308082            | 1MARSHAL3 24.000 | 3  | Coal      | 705       | Coal      | 705       |
| Oxford               | 308083            | 10XFORD 6.6000   | 1  | Hydro     | 20        | Hydro     | 20        |
| Rhodhiss             | 308084            | 1RHODHIS 6.6000  | 1  | Hydro     | 10        | Hydro     | 10        |
| Rhodhiss             | 308084            | 1RHODHIS 6.6000  | 2  | Hydro     | 12        | Hydro     | 12        |

| Summer Peak 2026 & | 2034 Regional SEF | RTP V3 Models      |    | 20        | )26       | 20               | )34       |
|--------------------|-------------------|--------------------|----|-----------|-----------|------------------|-----------|
| Plant              | <b>Bus Number</b> | Bus Name           | Id | Fuel Type | Pmax (MW) | <b>Fuel Type</b> | Pmax (MW) |
| Rhodhiss           | 308084            | 1RHODHIS 6.6000    | 3  | Hydro     | 12        | Hydro            | 12        |
| Marshall           | 308087            | 1MARSHAL2 20.000   | 2  | Coal      | 200       | Gas              | 391       |
| Marshall           | 308087            | 1MARSHAL2 20.000   | L  | Coal      | 192       |                  |           |
| Marshall           | 308088            | 1MARSHAL4 24.000   | 4  | Coal      | 711       | Coal             | 711       |
| Buck               | 308090            | 1BUCKG11 18.000    | 11 | Gas       | 176.5     | Gas              | 176.5     |
| Buck               | 308091            | 1BUCKG12 18.000    | 12 | Gas       | 176.5     | Gas              | 176.5     |
| Buck               | 308092            | 1BUCKS10 18.000    | 10 | Gas       | 333       | Gas              | 333       |
| Bear Claw          | 309805            | 1BEARCLPV 44.000   | PV |           |           | Solar            | 28.25     |
| Mountain Island    | 308179            | 1MT ISLE 6.6000    | 1  | Hydro     | 17        | Hydro            | 17        |
| Mountain Island    | 308179            | 1MT ISLE 6.6000    | 2  | Hydro     | 17        | Hydro            | 17        |
| Mountain Island    | 308179            | 1MT ISLE 6.6000    | 3  | Hydro     | 17        | Hydro            | 17        |
| Mountain Island    | 308179            | 1MT ISLE 6.6000    | 4  | Hydro     | 17        | Hydro            | 17        |
| Cowans Ford        | 308227            | 1COWANS1 13.800    | 1  | Hydro     | 81        | Hydro            | 81        |
| McGuire            | 308228            | 1MCGUIRE1 24.000   | 1  | Nuclear   | 1172      | Nuclear          | 1172      |
| McGuire            | 308229            | 1MCGUIRE2 24.000   | 2  | Nuclear   | 1165      | Nuclear          | 1165      |
| Cowans Ford        | 308237            | 1COWANS2 13.800    | 2  | Hydro     | 81        | Hydro            | 81        |
| Cowans Ford        | 308238            | 1COWANS3 13.800    | 3  | Hydro     | 81        | Hydro            | 81        |
| Cowans Ford        | 308239            | 1COWANS4 13.800    | 4  | Hydro     | 81        | Hydro            | 81        |
| Beaverdam          | 308659            | 1BEAVERDAMPV44.000 | PV | Solar     | 42        | Solar            | 42        |
| Belews Creek       | 308377            | 1BELEWS1 18.000    | 1  | Coal/Gas  | 619       | Coal/Gas         | 619       |
| Belews Creek       | 308377            | 1BELEWS1 18.000    | L  | Coal/Gas  | 513       | Coal/Gas         | 513       |
| Belews Creek       | 308378            | 1BELEWS2 18.000    | 2  | Coal/Gas  | 624       | Coal/Gas         | 624       |
| Belews Creek       | 308378            | 1BELEWS2 18.000    | L  | Coal/Gas  | 503       | Coal/Gas         | 503       |
| Broad River        | 309814            | BROADRVRPV 100.00  | PV | Solar     | 50        | Solar            | 50        |
| Brookcliff         | 309621            | BROOKCLIFFPV100.00 | PV |           |           | Solar            | 50        |
| Cedar Cliff        | 308516            | 1CEDARCL 6.6000    | 1  | Hydro     | 6.4       | Hydro            | 6.4       |
| Bear Creek         | 308517            | 1BEARCRK 4.1600    | 1  | Hydro     | 9         | Hydro            | 9         |
| Tennessee Creek    | 308518            | 1TENNCRK 4.1600    | 1  | Hydro     | 11.5      | Hydro            | 11.5      |

| Summer Peak 2026 & 20           | 34 Regional SER   | TP V3 Models       |    | 20        | 26        | 20        | )34       |
|---------------------------------|-------------------|--------------------|----|-----------|-----------|-----------|-----------|
| Plant                           | <b>Bus Number</b> | <b>Bus Name</b>    | Id | Fuel Type | Pmax (MW) | Fuel Type | Pmax (MW) |
| Nantahala                       | 308558            | 1NANTAHA 13.200    | 1  | Hydro     | 51        | Hydro     | 51        |
| Thorpe                          | 308600            | 1THORPE 6.6000     | 1  | Hydro     | 21.6      | Hydro     | 21.6      |
| Thorpe                          | 308600            | 1THORPE 6.6000     | 2  | Hydro     | 3         | Hydro     | 3         |
| Dan River                       | 308603            | 1DNRVRG8 18.000    | 8  | Gas       | 176.5     | Gas       | 176.5     |
| Dan River                       | 308604            | 1DNRVRG9 18.000    | 9  | Gas       | 176.5     | Gas       | 176.5     |
| Dan River                       | 308605            | 1DNRVRS7 18.000    | 7  | Gas       | 333       | Gas       | 333       |
| Cleveland County                | 308607            | 1CLEVELAND1 16.500 | 1  | Gas       | 178       | Gas       | 178       |
| Cleveland County                | 308608            | 1CLEVELAND2 16.500 | 2  | Gas       | 178       | Gas       | 178       |
| Cleveland County                | 308609            | 1CLEVELAND3 16.500 | 3  | Gas       | 178       | Gas       | 178       |
| Cleveland County                | 308610            | 1CLEVELAND4 16.500 | 4  | Gas       | 178       | Gas       | 178       |
| Lee                             | 308613            | 1LEECCS10 22.000   | 10 | Gas       | 329       | Gas       | 329       |
| Lee                             | 308614            | 1LEECCG11 18.000   | 11 | Gas       | 231       | Gas       | 231       |
| Lee                             | 308615            | 1LEECCG12 18.000   | 12 | Gas       | 231       | Gas       | 231       |
| Kings Mountain Energy<br>Center | 308653            | 1KMECS 18.000      | 1  | Gas       | 208       | Gas       | 208       |
| Kings Mountain Energy<br>Center | 308654            | 1KMECG 21.000      | 2  | Gas       | 244       | Gas       | 244       |
| Five Circles                    | 309811            | FIVECRCLPV 100.00  | PV |           |           | Solar     | 74.9      |
| Gaston                          | 308675            | 1GASTONPV 44.000   | PV | Solar     | 25        | Solar     | 25        |
| Healing Springs                 | 309859            | HLNGSPRNGSPV100.00 | PV |           |           | Solar     | 55        |
| Oxford                          | 308683            | 10XFORD2 6.6000    | 2  | Hydro     | 20        | Hydro     | 20        |
| High Shoals                     | 309615            | 1HGHSHLPV 44.000   | PV | Solar     | 16        | Solar     | 16        |
| Lincoln                         | 308692            | 1LINCLN17 22.000   | Н  | Gas       | 525       | Gas       | 525       |
| Hornet                          | 309609            | HORNETPV 100.00    | PV | Solar     | 73        | Solar     | 73        |
| Cliffside                       | 308789            | 1CLFSDGEN 24.500   | 6  | Coal/Gas  | 880       | Coal/Gas  | 880       |
| Clemson                         | 308878            | CLEMSONU 100.00    | 1  | Gas       | 17.8      | Gas       | 17.8      |
| Keowee                          | 308880            | 1KEOWEE2 13.800    | 2  | Hydro     | 80        | Hydro     | 80        |
| Fishing Creek                   | 308912            | 1FISHNG C2 6.6000  | 3  | Hydro     | 9.5       | Hydro     | 9.5       |
| Fishing Creek                   | 308912            | 1FISHNG C2 6.6000  | 4  | Hydro     | 11        | Hydro     | 11        |

| Summer Peak 2026 8 | k 2034 Regional SER | RTP V3 Models      |    | 20        | 26        | 203          | 84        |
|--------------------|---------------------|--------------------|----|-----------|-----------|--------------|-----------|
| Plant              | <b>Bus Number</b>   | <b>Bus Name</b>    | Id | Fuel Type | Pmax (MW) | Fuel Type    | Pmax (MW) |
| Fishing Creek      | 308912              | 1FISHNG C2 6.6000  | 5  | Hydro     | 8         | Hydro        | 8         |
| Bridgewater        | 308920              | 1BRIDGEW2 6.6000   | 2  | Hydro     | 15.5      | Hydro        | 15.5      |
| Hudson Place       | 309795              | HUDPLACPV 100.00   | PV |           |           | Solar        | 70.7      |
| Joanna White       | 309719              | JOANNAWPV 100.00   | PV |           |           | Solar        | 37.5      |
| Lick Creek         | 309853              | LICKCRKPV 100.00   | PV | Solar     | 50        | Solar        | 50        |
| Maiden Creek       | 308685              | MAIDENCRKPV 100.00 | PV | Solar     | 69        | Solar        | 69        |
| McBride            | 308107              | UNEMC14 100.00     | PV | Solar     | 74.9      | Solar        | 74.9      |
| Bad Creek II       | 309702              | 1BADCRK56 19.000   | 5  |           |           | Pumped Hydro | 420       |
| Bad Creek II       | 309702              | 1BADCRK56 19.000   | 6  |           |           | Pumped Hydro | 420       |
| Bad Creek II       | 309703              | 1BADCRK78 19.000   | 7  |           |           | Pumped Hydro | 420       |
| Bad Creek II       | 309703              | 1BADCRK78 19.000   | 8  |           |           | Pumped Hydro | 420       |
| Misenheimer        | 307527              | MISENHEPV 100.00   | PV | Solar     | 74.4      | Solar        | 74.4      |
| Mocksville         | 307613              | 1MOCKSVPV 44.000   | PV | Solar     | 12.9      | Solar        | 12.9      |
| Monroe             | 307614              | MONROEPV 100.00    | PV | Solar     | 53.6      | Solar        | 53.6      |
| Newberry           | 309712              | NEWBERYPV 100.00   | PV | Solar     | 74.5      | Solar        | 74.5      |
| Partin             | 309606              | PARTINPV 100.00    | PV | Solar     | 50        | Solar        | 50        |
| Pelham             | 309716              | 1PELHAMPV 44.000   | PV | Solar     | 32        | Solar        | 32        |
| Pinson             | 309810              | 1PINSONPV 44.000   | PV | Solar     | 20        | Solar        | 20        |
| Quail              | 309902              | 1QUAILPV 44.000    | PV | Solar     | 30        | Solar        | 30        |
| Riverbend          | 309792              | RIVERBNDBESS100.00 | ВТ |           |           | Battery      | 115       |
| Quaker Creek       | 309808              | 1QUAKERCKPV 44.000 | PV |           |           | Solar        | 35        |
| Ruff               | 309608              | 1RUFFPV 44.000     | PV | Solar     | 22        | Solar        | 22        |
| Rutabaga           | 309708              | RUTAB PV 100.00    | PV |           |           | Solar        | 69.75     |
| Rutherford         | 306146              | RUTHPV 100.00      | PV | Solar     | 67        | Solar        | 67        |
| South Davidson     | 309807              | SDAVDSNPV 100.00   | PV |           |           | Solar        | 80        |
| Speedway           | 309809              | SPEEDWAYPV 100.00  | PV | Solar     | 22.6      | Solar        | 22.6      |
| Stanly             | 308673              | STANLYPV 100.00    | PV | Solar     | 50        | Solar        | 50        |
| Stony Knoll        | 309789              | 1STONYKNLLPV44.000 | PV | Solar     | 22.6      | Solar        | 22.6      |



| Summer Peak 2026 | & 2034 Regional SER | TP V3 Models       |    | 20        | 26        | 20        | )34       |
|------------------|---------------------|--------------------|----|-----------|-----------|-----------|-----------|
| Plant            | <b>Bus Number</b>   | <b>Bus Name</b>    | Id | Fuel Type | Pmax (MW) | Fuel Type | Pmax (MW) |
| Sugar            | 309857              | SUGARPV 100.00     | PV | Solar     | 60        | Solar     | 60        |
| SunEd            | 308784              | SUNED100 100.00    | PV | Solar     | 15        | Solar     | 15        |
| Sweetwater       | 309728              | SWATERPV 100.00    | PV |           |           | Solar     | 34        |
| Two Hearted      | 309804              | 1TWOHRTDPV 44.000  | PV | Solar     | 22        | Solar     | 22        |
| West River       | 306972              | WESTRVRPV 100.00   | PV | Solar     | 40        | Solar     | 40        |
| Westminster      | 309707              | WESTMINSTERP100.00 | PV | Solar     | 70        | Solar     | 70        |
| Wateree          | 309861              | 1WATEREE_U1 6.6000 | 1  | Hydro     | 17        | Hydro     | 17        |
| Wateree          | 309862              | 1WATEREE_U2 6.6000 | 2  | Hydro     | 17        | Hydro     | 17        |
| Wateree          | 309863              | 1WATEREE_U3 6.6000 | 3  | Hydro     | 17        | Hydro     | 17        |
| Wateree          | 309864              | 1WATEREE_U4 6.6000 | 4  | Hydro     | 17        | Hydro     | 17        |
| Wateree          | 309865              | 1WATEREE_U5 6.6000 | 5  | Hydro     | 17        | Hydro     | 17        |
| Yorkshire        | 309727              | YORKSHPV 100.00    | PV |           |           | Solar     | 45        |
| Allen            | 309907              | ALLEN BAT 100.00   | ВТ | Battery   | 50        | Battery   | 50        |



### VIII. Appendix 3: Duke Progress East BAA

The following information provides a more granular overview of the Duke Progress East BAA input assumptions and transmission expansion plan that are incorporated in the development of the SERTP regional transmission plan.

Table A3.1: 2024 SERTP Regional Transmission Plan – Transmission Project Snapshot by operating voltage (Duke Progress East BAA)

| Duke Progress East BAA                                  | 100-120 | 121-150 | 151-199 | 200-299 | 300-399 | 400-550 |
|---------------------------------------------------------|---------|---------|---------|---------|---------|---------|
| Duke Flogless Last DAA                                  | kV      | kV      | kV      | kV      | kV      | kV      |
| Transmission lines – New                                |         |         |         |         |         |         |
| (Circuit Mi.)                                           |         |         |         |         |         |         |
| Transmission Lines – Uprates <sup>1</sup> (Circuit Mi.) | 158.3   |         |         | 85.7    |         |         |
| Transformers <sup>2</sup> – New                         | 2       |         |         |         |         |         |
| Transformers <sup>2</sup> – Replacements                |         |         |         |         |         |         |

<sup>1</sup> A transmission line uprate may be the result of reconductoring and/or increasing the operating temperature/voltage along the transmission line.

Table A3.2: Interface commitments<sup>1</sup> modeled in the SERTP Summer Peak models – Duke Progress East BAA

| То                        | 2026  | 2029  | 2034  |
|---------------------------|-------|-------|-------|
| Duke Carolinas            | -1888 | -1695 | -1199 |
| <b>Duke Progress West</b> | 0     | 0     | 0     |
| PJM                       | -105  | -105  | -105  |
| Total                     | -1993 | -1800 | -1304 |

<sup>&</sup>lt;sup>1</sup> A positive number represents a net export from the Duke Progress East BAA.

<sup>&</sup>lt;sup>2</sup> The voltages shown represent the operating voltages on the high side terminals of the transformer.



A detailed listing of the changes in generation assumptions within the Duke Progress East BAA throughout the ten (10) year planning horizon, including the year(s) in which they occur, is provided in Table A3.3 below. Table A3.4 provides a listing of generation assumptions based upon long-term, firm point-to-point commitments. The capacity (MW) values shown for each year reflect summer peak conditions. Table A3.5 provides a listing of all generators modeled in the 2024 Version 3 Summer Peak power flow model.

Table A3.3: Changes in Generation Assumptions Based Upon LSEs - Duke Progress East BAA

| SITE                 | FUEL TYPE | 2025 | 2026 | 2027 | 2028 | 2029 | 2030 | 2031 | 2032 | 2033 | 2034 |
|----------------------|-----------|------|------|------|------|------|------|------|------|------|------|
| Nutbush              | PV        | 35   | 35   | 35   | 35   | 35   | 35   | 35   | 35   | 35   | 35   |
| Sapony Creek         | PV        | 23.4 | 23.4 | 23.4 | 23.4 | 23.4 | 23.4 | 23.4 | 23.4 | 23.4 | 23.4 |
| Camp Lejeune Battery | Battery   | 11   | 11   | 11   | 11   | 11   | 11   | 11   | 11   | 11   | 11   |

*Table A3.4:* Generation Assumptions Based Upon Expected Long-term, Firm Point-to-Point Commitments – Duke Progress East BAA

| SITE             | 2025 | 2026 | 2027 | 2028 | 2029 | 2030 | 2031 | 2032 | 2033 | 2034 |
|------------------|------|------|------|------|------|------|------|------|------|------|
| Hamlet #1 And #2 | 110  | 110  | 110  | 110  | 110  | 110  | 110  | 110  | 110  | 110  |
| Hamlet #6        | 55   | 55   | 55   | 55   | 55   | 55   | 55   | 55   | 55   | 55   |
| Hamlet #3        | 4    | 6    | 9    | 9    | 11   | 13   | 14   | 0    | 0    | 0    |

Table A3.5: Generating Units Modeled in the 2024 Version 3 Summer Peak Power flow Model - Duke Progress East BAA

| Summer Peak 2026 & 2034 | 20            | 26                | 203 | 4           |           |             |              |
|-------------------------|---------------|-------------------|-----|-------------|-----------|-------------|--------------|
| Plant                   | Bus<br>Number | Bus Name          | Id  | Fuel Type   | Pmax (MW) | Fuel Type   | Pmax<br>(MW) |
| Anson CT                | 304993        | 1ANSON CT1 13.800 | 1   | Natural Gas | 57.5      | Natural Gas | 57.5         |
| Anson CT                | 304994        | 1ANSON CT2 13.800 | 2   | Natural Gas | 57.5      | Natural Gas | 57.5         |
| Anson CT                | 304995        | 1ANSON CT3 13.800 | 3   | Natural Gas | 57.5      | Natural Gas | 57.5         |
| Anson CT                | 304996        | 1ANSON CT4 13.800 | 4   | Natural Gas | 57.5      | Natural Gas | 57.5         |
| Anson CT                | 304997        | 1ANSON CT5 13.800 | 5   | Natural Gas | 57.5      | Natural Gas | 57.5         |
| Anson CT                | 304998        | 1ANSON CT6 13.800 | 6   | Natural Gas | 57.5      | Natural Gas | 57.5         |

| Summer Peak 2026 & 2034 Reg | gional SERTP V3 I | Models             |    | 20          | )26       | 2034        |              |
|-----------------------------|-------------------|--------------------|----|-------------|-----------|-------------|--------------|
| Plant                       | Bus<br>Number     | Bus Name           | Id | Fuel Type   | Pmax (MW) | Fuel Type   | Pmax<br>(MW) |
| Bay Tree Solar              | 305834            | 1BAYTRESOLGL0.6300 | PV | Solar       | 71.3      | Solar       | 71.3         |
| Bladen Solar                | 305334            | 1BLADENSOLGL0.3700 | PV | Solar       | 35        | Solar       | 35           |
| Blewett Hydro               | 304892            | 1BLEWETTE 1-4.8000 | 1  | Hydro       | 4         | Hydro       | 4            |
| Blewett Hydro               | 304892            | 1BLEWETTE 1-4.8000 | 2  | Hydro       | 4         | Hydro       | 4            |
| Blewett Hydro               | 304892            | 1BLEWETTE 1-4.8000 | 3  | Hydro       | 4         | Hydro       | 4            |
| Blewett Hydro               | 304893            | 1BLEWETTE 4-4.8000 | 4  | Hydro       | 5         | Hydro       | 5            |
| Blewett Hydro               | 304893            | 1BLEWETTE 4-4.8000 | 5  | Hydro       | 5         | Hydro       | 5            |
| Blewett Hydro               | 304893            | 1BLEWETTE 4-4.8000 | 6  | Hydro       | 5         | Hydro       | 5            |
| Blewett CT                  | 304933            | 1BLW IC 1&2 13.800 | C1 | Natural Gas | 13        | Natural Gas | 13           |
| Blewett CT                  | 304933            | 1BLW IC 1&2 13.800 | C2 | Natural Gas | 13        | Natural Gas | 13           |
| Blewett CT                  | 304934            | 1BLW IC 3&4 13.800 | C3 | Natural Gas | 13        | Natural Gas | 13           |
| Blewett CT                  | 304934            | 1BLW IC 3&4 13.800 | C4 | Natural Gas | 13        | Natural Gas | 13           |
| Brunswick Nuclear #1        | 304862            | 1BRUNSWICK#124.000 | 1  | Nuclear     | 938       | Nuclear     | 938          |
| Brunswick Nuclear #2        | 304863            | 1BRUNSWICK#224.000 | 1  | Nuclear     | 932       | Nuclear     | 932          |
| Buckleberry Canal Solar     | 305714            | 1BUKLEBSOLGL0.5500 | PV | Solar       | 52.9      | Solar       | 52.9         |
| Bullocksville Solar         | 305644            | 1BULLOKSOLGL0.3850 | PV | Solar       | 50.58     | Solar       | 50.58        |
| Cabin Creek Solar           | 305874            | 1CABCRKSOLGL0.5500 | PV | Solar       | 71.2      | Solar       | 71.2         |
| County Line Solar           | 305384            | 1COLINSOL1GL0.3700 | PV | Solar       | 71        | Solar       | 71           |
| Crooked Run Solar           | 305884            | 1CROOKDSOLGL0.5500 | PV | Solar       | 71.25     | Solar       | 71.25        |
| Darlington County CT        | 304908            | 1DARL CO #1213.800 | 12 | Natural Gas | 115       | Natural Gas | 115          |
| Darlington County CT        | 304909            | 1DARL CO #1313.800 | 13 | Natural Gas | 115       | Natural Gas | 115          |
| Eden Solar                  | 305324            | 1EDENSOL1GLV0.3800 | PV | Solar       | 24.4      | Solar       | 24.4         |
| Eden Solar                  | 305327            | 1EDENSOL2GLV0.3800 | PV | Solar       | 24.4      | Solar       | 24.4         |
| Elm City Solar              | 305314            | 1ELMCTYSOLGL0.3600 | PV | Solar       | 40.7      | Solar       | 40.7         |
| Fayetteville Butler Warner  | 304948            | 1FAY PWC ST 13.800 | Α  | Natural Gas | 60        | Natural Gas | 60           |
| Fayetteville Butler Warner  | 304940            | 1FAY PWC1 13.800   | Α  | Natural Gas | 20        | Natural Gas | 20           |
| Fayetteville Butler Warner  | 304941            | 1FAY PWC2 13.800   | Α  | Natural Gas | 20        | Natural Gas | 20           |
| Fayetteville Butler Warner  | 304942            | 1FAY PWC3 13.200   | Α  | Natural Gas | 20        | Natural Gas | 20           |

| Summer Peak 2026 & 2034 Reg | ional SERTP V3 N | Models             |    | 20          | 26        | 2034        |              |  |
|-----------------------------|------------------|--------------------|----|-------------|-----------|-------------|--------------|--|
| Plant                       | Bus<br>Number    | Bus Name           | Id | Fuel Type   | Pmax (MW) | Fuel Type   | Pmax<br>(MW) |  |
| Fayetteville Butler Warner  | 304943           | 1FAY PWC4 13.200   | А  | Natural Gas | 20        | Natural Gas | 20           |  |
| Fayetteville Butler Warner  | 304944           | 1FAY PWC5 13.800   | Α  | Natural Gas | 20        | Natural Gas | 20           |  |
| Fayetteville Butler Warner  | 304945           | 1FAY PWC6 13.800   | Α  | Natural Gas | 20        | Natural Gas | 20           |  |
| Fayetteville Butler Warner  | 304946           | 1FAY PWC7 13.800   | Α  | Natural Gas | 20        | Natural Gas | 20           |  |
| Fayetteville Butler Warner  | 304947           | 1FAY PWC8 13.800   | Α  | Natural Gas | 20        | Natural Gas | 20           |  |
| Fayetteville Solar          | 305224           | 1FAYSOL-GLV 0.4800 | PV | Solar       | 23.4      | Solar       | 23.4         |  |
| Fox Creek Solar             | 305664           | 1FOXCRKSOLGL0.5500 | PV | Solar       | 50.2      | Solar       | 50.2         |  |
| Frazier Solar               | 305674           | 1FRAZERSOLGL0.5500 | PV | Solar       | 51        | Solar       | 51           |  |
| Gold Valley Solar           | 305464           | 1GOLDVYSOLGL0.5500 | PV | Solar       | 80        | Solar       | 80           |  |
| Hamlet CT                   | 304987           | 1HAMLET CT1 13.800 | 1  | Natural Gas | 56        | Natural Gas | 56           |  |
| Hamlet CT                   | 304988           | 1HAMLET CT2 13.800 | 2  | Natural Gas | 56        | Natural Gas | 56           |  |
| Hamlet CT                   | 304989           | 1HAMLET CT3 13.800 | 3  | Natural Gas | 56        | Natural Gas | 56           |  |
| Hamlet CT                   | 304990           | 1HAMLET CT4 13.800 | 4  | Natural Gas | 56        | Natural Gas | 56           |  |
| Hamlet CT                   | 304991           | 1HAMLET CT5 13.800 | 5  | Natural Gas | 56        | Natural Gas | 56           |  |
| Hamlet CT                   | 304992           | 1HAMLET CT6 13.800 | 6  | Natural Gas | 56        | Natural Gas | 56           |  |
| Harris Nuclear              | 304865           | 1HARRIS 22.000     | 1  | Nuclear     | 964.0001  | Nuclear     | 964.0001     |  |
| Lee Steam Plant             | 304961           | 1LEE CC_1A 16.500  | 1A | Natural Gas | 170       | Natural Gas | 170          |  |
| Lee Steam Plant             | 304962           | 1LEE CC_1B 16.500  | 1B | Natural Gas | 170       | Natural Gas | 170          |  |
| Lee Steam Plant             | 304963           | 1LEE CC_1C 16.500  | 1C | Natural Gas | 170       | Natural Gas | 170          |  |
| Lee Steam Plant             | 304964           | 1LEE CC_S1 19.500  | S1 | Solar       | 378       | Solar       | 378          |  |
| Maxton Solar                | 305424           | 1MAXTNSOLGLV0.3700 | PV | Solar       | 34.4      | Solar       | 34.4         |  |
| Mayo Plant                  | 304873           | 1MAYO #1 20.000    | 1  | Coal        | 704       | Coal        | 704          |  |
| Nutbush Solar               | 305584           | 1NUTBSHSOLGL0.6300 | PV | Solar       | 35.5      | Solar       | 35.5         |  |
| Richmond County Plant       | 304971           | 1RICH CT1 18.000   | 1  | Natural Gas | 157       | Natural Gas | 157          |  |
| Richmond County Plant       | 304980           | 1RICH CT10 16.500  | 10 | Natural Gas | 178       | Natural Gas | 178          |  |
| Richmond County Plant       | 304972           | 1RICH CT2 18.000   | 2  | Natural Gas | 156       | Natural Gas | 156          |  |
| Richmond County Plant       | 304973           | 1RICH CT3 18.000   | 3  | Natural Gas | 155       | Natural Gas | 155          |  |
| Richmond County Plant       | 304974           | 1RICH CT4 18.000   | 4  | Natural Gas | 159       | Natural Gas | 159          |  |
|                             |                  |                    |    |             |           |             |              |  |

| Summer Peak 2026 & 2034 Re | egional SERTP V3 I | Vlodels            |           | 2026        |           | 2034        |              |
|----------------------------|--------------------|--------------------|-----------|-------------|-----------|-------------|--------------|
| Plant                      | Bus<br>Number      | Bus Name           | Id        | Fuel Type   | Pmax (MW) | Fuel Type   | Pmax<br>(MW) |
| Richmond County Plant      | 304975             | 1RICH CT6 18.000   | 6         | Natural Gas | 145       | Natural Gas | 145          |
| Richmond County Plant      | 304976             | 1RICH CT7 18.000   | 7         | Natural Gas | 152       | Natural Gas | 152          |
| Richmond County Plant      | 304977             | 1RICH CT8 18.000   | 8         | Natural Gas | 152       | Natural Gas | 152          |
| Richmond County Plant      | 304979             | 1RICH CT9 16.500   | 9         | Natural Gas | 178       | Natural Gas | 178          |
| Richmond County Plant      | 304978             | 1RICH ST4 18.000   | <b>S4</b> | Natural Gas | 171       | Natural Gas | 171          |
| Richmond County Plant      | 304981             | 1RICH ST5 18.000   | S5        | Natural Gas | 252       | Natural Gas | 252          |
| Robinson Nuclear           | 304864             | 1ROBINSON#2 22.000 | 1         | Nuclear     | 759       | Nuclear     | 759          |
| Roslin Solar               | 305414             | 1ROSLNSOL1GL0.3700 | PV        | Solar       | 40        | Solar       | 40           |
| Roslin Solar               | 305417             | 1ROSLNSOL2GL0.3700 | PV        | Solar       | 39        | Solar       | 39           |
| Rowan Solar                | 305394             | 1ROWANSOL1GL0.3570 | PV        | Solar       | 20.5      | Solar       | 20.5         |
| Rowan Solar                | 305397             | 1ROWANSOL2GL0.3570 | PV        | Solar       | 18.9      | Solar       | 18.9         |
| Roxboro Plant              | 304869             | 1ROXBORO #1 22.000 | 1         | Coal        | 379       | Coal        | 379          |
| Roxboro Plant              | 304870             | 1ROXBORO #2 24.000 | 1         | Coal        | 668       | Coal        | 668          |
| Roxboro Plant              | 304871             | 1ROXBORO #3 24.000 | 1         | Coal        | 694       | Coal        | 694          |
| Roxboro Plant              | 304872             | 1ROXBORO #4 24.000 | 1         | Coal        | 698       | Coal        | 698          |
| Sandy Bottom Solar         | 305454             | 1SANDYBSOLGL0.6000 | PV        | Solar       | 49.6      | Solar       | 49.6         |
| Sapony Creek Solar         | 305574             | 1SAPCRKSOLGL0.6300 | PV        | Solar       | 23.7      | Solar       | 23.7         |
| Shoe Creek Solar           | 305634             | 1SHOECKSOLGL0.3850 | PV        | Solar       | 65.36     | Solar       | 65.36        |
| Sneedsboro Solar           | 305404             | 1SNEEDSOL1GL0.3570 | PV        | Solar       | 38.8      | Solar       | 38.8         |
| Sneedsboro Solar           | 305407             | 1SNEEDSOL2GL0.3570 | PV        | Solar       | 40.9      | Solar       | 40.9         |
| Sutton County Plant        | 305911             | 1SUT CC 1A 16.500  | 1A        | Natural Gas | 173       | Natural Gas | 173          |
| Sutton County Plant        | 305912             | 1SUT CC 1B 16.500  | 1B        | Natural Gas | 173       | Natural Gas | 173          |
| Sutton County Plant        | 305913             | 1SUT CC ST 21.000  | ST        | Natural Gas | 268       | Natural Gas | 268          |
| Sutton County Plant        | 304919             | 1SUTTONCT4 13.800  | 4         | Natural Gas | 42        | Natural Gas | 42           |
| Sutton County Plant        | 304920             | 1SUTTONCT5 13.800  | 5         | Natural Gas | 42        | Natural Gas | 42           |
| Sycamore Creek Solar       | 305894             | 1SYCAMRSOLGL0.6300 | PV        | Solar       | 49.4      | Solar       | 49.4         |
| Tillery Hydro              | 304888             | 1TILLERY #1 13.800 | 1         | Hydro       | 21        | Hydro       | 21           |
| Tillery Hydro              | 304889             | 1TILLERY #2 13.800 | 1         | Hydro       | 18        | Hydro       | 18           |
|                            |                    |                    |           |             |           |             |              |

| Summer Peak 2026 & 2034 Re | egional SERTP V3 I | Models             |    | 20          | 26        | 2034        |              |
|----------------------------|--------------------|--------------------|----|-------------|-----------|-------------|--------------|
| Plant                      | Bus<br>Number      | Bus Name           | Id | Fuel Type   | Pmax (MW) | Fuel Type   | Pmax<br>(MW) |
| Tillery Hydro              | 304890             | 1TILLERY #3 13.800 | 1  | Hydro       | 21        | Hydro       | 21           |
| Tillery Hydro              | 304891             | 1TILLERY #4 13.800 | 1  | Hydro       | 25        | Hydro       | 25           |
| Trent River Solar          | 305544             | 1TRENTRSOLGL0.6300 | PV | Solar       | 79.9      | Solar       | 79.9         |
| Turnbull Creek Solar       | 305534             | 1TURNBLSOLGL0.5500 | PV | Solar       | 51        | Solar       | 51           |
| Warsaw Solar               | 305903             | 1WARSWSOL1GL0.3600 | PV | Solar       | 40.2      | Solar       | 40.2         |
| Warsaw Solar               | 305906             | 1WARSWSOL2GL0.3600 | PV | Solar       | 25.6      | Solar       | 25.6         |
| Wayne County Plant         | 304956             | 1WAYNE CO#1018.000 | 10 | Natural Gas | 169       | Natural Gas | 169          |
| Wayne County Plant         | 304957             | 1WAYNE CO#1118.000 | 11 | Natural Gas | 174       | Natural Gas | 174          |
| Wayne County Plant         | 304958             | 1WAYNE CO#1218.000 | 12 | Natural Gas | 164       | Natural Gas | 164          |
| Wayne County Plant         | 304959             | 1WAYNE CO#1318.000 | 13 | Natural Gas | 162       | Natural Gas | 162          |
| Wayne County Plant         | 304960             | 1WAYNE CO#1418.000 | 14 | Natural Gas | 153       | Natural Gas | 153          |
| Willard Solar              | 305474             | 1WILARDSOLGL0.6000 | PV | Solar       | 34.7      | Solar       | 34.7         |
| Weatherspoon CT            | 304924             | 1WSPN IC#1 13.800  | Α  | Natural Gas | 31        | Natural Gas | 31           |
| Weatherspoon CT            | 304925             | 1WSPN IC#2 13.800  | Α  | Natural Gas | 31        | Natural Gas | 31           |
| Weatherspoon CT            | 304927             | 1WSPN IC#3 13.800  | Α  | Natural Gas | 32        | Natural Gas | 32           |
| Weatherspoon CT            | 304928             | 1WSPN IC#4 13.800  | Α  | Natural Gas | 30        | Natural Gas | 30           |
| Distributed Generation     | 304221             | 2PA-ROCKMT T69.000 | PV | Solar       | 4.999     | Solar       | 4.999        |
| Distributed Generation     | 304364             | 3ABERDEEN 115.00   | PV | Solar       | 2.243     | Solar       | 2.243        |
| Distributed Generation     | 304312             | 3ASHEBOR E T115.00 | PV | Solar       | 5.017     | Solar       | 5.017        |
| Distributed Generation     | 304319             | 3ASHEBORO NO115.00 | PV | Solar       | 9.938     | Solar       | 9.938        |
| Distributed Generation     | 304408             | 3BEARD 115.00      | PV | Solar       | 20.075    | Solar       | 20.075       |
| Distributed Generation     | 304281             | 3BELFAST 115.00    | PV | Solar       | 15.611    | Solar       | 15.611       |
| Distributed Generation     | 304280             | 3BEULAVILLE 115.00 | PV | Solar       | 21.003    | Solar       | 21.003       |
| Distributed Generation     | 304294             | 3BISCOE SUB 115.00 | PV | Solar       | 25.083    | Solar       | 25.083       |
| Distributed Generation     | 304574             | 3BLADENBORO 115.00 | PV | Solar       | 14.53     | Solar       | 14.53        |
| Distributed Generation     | 304464             | 3BRIDGETON 115.00  | PV | Solar       | 10.001    | Solar       | 10.001       |
| Distributed Generation     | 304513             | 3BURGAW SUB 115.00 | PV | Solar       | 19.776    | Solar       | 19.776       |
| Distributed Generation     | 304306             | 3CANDOR 115.00     | PV | Solar       | 19.856    | Solar       | 19.856       |
|                            |                    |                    |    |             |           |             |              |

| Summer Peak 2026 & 2034 Re | egional SERTP V3 I | Vlodels            |    | 20        | 026       | 2034      |              |  |
|----------------------------|--------------------|--------------------|----|-----------|-----------|-----------|--------------|--|
| Plant                      | Bus<br>Number      | Bus Name           | Id | Fuel Type | Pmax (MW) | Fuel Type | Pmax<br>(MW) |  |
| Distributed Generation     | 304589             | 3CHADBORN 115.00   | PV | Solar     | 13.827    | Solar     | 13.827       |  |
| Distributed Generation     | 304719             | 3CHERAW 115.00     | PV | Solar     | 2.956     | Solar     | 2.956        |  |
| Distributed Generation     | 304570             | 3CLARKTON 115.00   | PV | Solar     | 11.947    | Solar     | 11.947       |  |
| Distributed Generation     | 304170             | 3CLAYTON 115.00    | PV | Solar     | 4.711     | Solar     | 4.711        |  |
| Distributed Generation     | 304256             | 3CLINT FERRE115.00 | BG | Biogas    | 1.76      | Biogas    | 1.76         |  |
| Distributed Generation     | 304256             | 3CLINT FERRE115.00 | PV | Solar     | 10.218    | Solar     | 10.218       |  |
| Distributed Generation     | 304258             | 3CLINTON NTH115.00 | PV | Solar     | 15.119    | Solar     | 15.119       |  |
| Lumberton Cogen            | 304603             | 3COG LUMB SU115.00 | 1  | Biogas    | 32        | Biogas    | 32           |  |
| Distributed Generation     | 304649             | 3DARL PINEVI115.00 | PV | Solar     | 8.006     | Solar     | 8.006        |  |
| Distributed Generation     | 304660             | 3DARLINGTON 115.00 | PV | Solar     | 12.705    | Solar     | 12.705       |  |
| Distributed Generation     | 304627             | 3DELCO 115.00      | PV | Solar     | 19.555    | Solar     | 19.555       |  |
| Distributed Generation     | 304654             | 3DILLON 115.00     | PV | Solar     | 6.318     | Solar     | 6.318        |  |
| Distributed Generation     | 305092             | 3E10-HOG SWM115.00 | PV | Solar     | 7.999     | Solar     | 7.999        |  |
| Distributed Generation     | 305097             | 3E10-RENNERT115.00 | PV | Solar     | 1.998     | Solar     | 1.998        |  |
| Distributed Generation     | 305098             | 3E10-ROCKFIS115.00 | BG | Biogas    | 2.118     | Biogas    | 2.118        |  |
| Distributed Generation     | 305098             | 3E10-ROCKFIS115.00 | PV | Solar     | 1.999     | Solar     | 1.999        |  |
| Distributed Generation     | 305099             | 3E10-WESTLUM115.00 | PV | Solar     | 1.999     | Solar     | 1.999        |  |
| Distributed Generation     | 305107             | 3E14-ETHER 115.00  | PV | Solar     | 3.989     | Solar     | 3.989        |  |
| Distributed Generation     | 305109             | 3E14-LIBERTY115.00 | PV | Solar     | 6.5       | Solar     | 6.5          |  |
| Distributed Generation     | 305110             | 3E14-PARKWOO115.00 | PV | Solar     | 1.999     | Solar     | 1.999        |  |
| Distributed Generation     | 305114             | 3E14-ROBBINS115.00 | PV | Solar     | 4.998     | Solar     | 4.998        |  |
| Distributed Generation     | 305112             | 3E14-TROY 115.00   | PV | Solar     | 1.99      | Solar     | 1.99         |  |
| Distributed Generation     | 305113             | 3E14-ULAH 115.00   | PV | Solar     | 6.125     | Solar     | 6.125        |  |
| Distributed Generation     | 305129             | 3E15-GRAYSCR115.00 | PV | Solar     | 5.997     | Solar     | 5.997        |  |
| Distributed Generation     | 305131             | 3E15-HARGROV115.00 | PV | Solar     | 1.5       | Solar     | 1.5          |  |
| Distributed Generation     | 305134             | 3E15-VANDER 115.00 | PV | Solar     | 1         | Solar     | 1            |  |
| Distributed Generation     | 305152             | 3E17-DUDLEY 115.00 | PV | Solar     | 2         | Solar     | 2            |  |
| Distributed Generation     | 305159             | 3E17-LAGRANG115.00 | PV | Solar     | 2         | Solar     | 2            |  |

| Distributed Generation   305160   3E17-MT OLIV115.00   PV   Solar   1.999   Solar   1.999   Solar   1.999   Solar   1.999   Distributed Generation   305162   3E17-ROSEWOO115.00   PV   Solar   2   Solar   2.90   Solar   1.999   Distributed Generation   305061   3E9-DAWSON   115.00   PV   Solar   1.99   Solar   1.99   Solar   1.99   Distributed Generation   305061   3E9-EAGLE NS115.00   PV   Solar   5.002   Solar   5.002   Solar   3.634   Sol | Summer Peak 2026 & 2034 Re | egional SERTP V3 I | Models             |    | 2026      |           | 2034      |              |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------|--------------------|--------------------|----|-----------|-----------|-----------|--------------|
| Distributed Generation         305162         3E17-ROSEWOO115.00         PV         Solar         2         Solar         2           Distributed Generation         305061         3E9-DAWSON 115.00         PV         Solar         1.99         Solar         1.99           Distributed Generation         305062         3E9-EAGLE ISLAIN15.00         PV         Solar         5.002         Solar         5.002           Distributed Generation         304565         3EAGLE ISLAN115.00         PV         Solar         3.634         Solar         3.634           Distributed Generation         304527         3ELIZTOWN SU115.00         PV         Solar         4.8         Solar         4.8           Distributed Generation         304202         3ERWIN115 SU115.00         PV         Solar         5.078         Solar         9.993           Distributed Generation         304599         3FAIR BLUFF 115.00         PV         Solar         5         Solar         5.078           Distributed Generation         304418         3FAIR MINFT SU115.00         PV         Solar         27.949         Solar         27.949           Distributed Generation         304613         3FLOR MARBU115.00         PV         Solar         10.201         Solar <t< th=""><th>Plant</th><th></th><th>Bus Name</th><th>Id</th><th>Fuel Type</th><th>Pmax (MW)</th><th>Fuel Type</th><th>Pmax<br/>(MW)</th></t<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Plant                      |                    | Bus Name           | Id | Fuel Type | Pmax (MW) | Fuel Type | Pmax<br>(MW) |
| Distributed Generation         305061         3E9-DAWSON 115.00         PV         Solar         1.99         Solar         1.99           Distributed Generation         305062         3E9-EAGLE NS115.00         PV         Solar         5.002         Solar         5.002           Distributed Generation         304565         3EAGLE ISLAN115.00         PV         Solar         3.634         Solar         3.632           Distributed Generation         304272         3ELIZTOWN SU115.00         PV         Solar         9.993         Solar         9.993           Distributed Generation         304202         3ERWIN115 SU115.00         PV         Solar         5.078         Solar         9.993           Distributed Generation         304599         3FAIR BLUFF 115.00         PV         Solar         5.078         Solar         5.078           Distributed Generation         304448         3FAIR MONT SU115.00         PV         Solar         27.949         Solar         27.94           Distributed Generation         304613         3FLOR MARBLU115.00         PV         Solar         10.201         Solar         10.20           Distributed Generation         304240         3FREMONT         115.00         PV         Solar         12.401                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Distributed Generation     | 305160             | 3E17-MT OLIV115.00 | PV | Solar     | 1.999     | Solar     | 1.999        |
| Distributed Generation         305062         3E9-EAGLE NS115.00         PV         Solar         5.002         Solar         5.002           Distributed Generation         304565         3EAGLE ISLAN115.00         PV         Solar         3.634         Solar         3.634           Distributed Generation         304572         3ELIZTOWN SU115.00         PV         Solar         4.8         Solar         4.8           Distributed Generation         304227         3ELM CITY 115.00         PV         Solar         5.078         Solar         9.993           Distributed Generation         304202         3ERWIN115 SU115.00         PV         Solar         5.078         Solar         5.078           Distributed Generation         304448         3FAIRM BLUFF 115.00         PV         Solar         5         Solar         5           Distributed Generation         304448         3FAIRMONT SU115.00         PV         Solar         10.201         Solar         27.949         Solar         27.949           Distributed Generation         304659         3FLOSUBLISWT115.00         PV         Solar         1.227         Solar         1.227           Distributed Generation         304420         3FREMONT         115.00         PV         Solar                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Distributed Generation     | 305162             | 3E17-ROSEWOO115.00 | PV | Solar     | 2         | Solar     | 2            |
| Distributed Generation         304565         3EAGLE ISLAN115.00         PV         Solar         3.634         Solar         3.632           Distributed Generation         304572         3ELIZTOWN SU115.00         PV         Solar         4.8         Solar         4.8           Distributed Generation         304227         3ELM CITY 115.00         PV         Solar         9.993         Solar         9.993           Distributed Generation         304202         3ERWIN115 SU115.00         PV         Solar         5.078         Solar         5.078           Distributed Generation         304448         3FAIR BLUFF 115.00         PV         Solar         5         Solar         5           Distributed Generation         304613         3FLOR MARBULI15.00         PV         Solar         27.94           Distributed Generation         304613         3FLOSUB115WT115.00         PV         Solar         10.201         Solar         10.20           Distributed Generation         304240         3FREMONT 115.00         PV         Solar         1.227         Solar         1.227           Distributed Generation         304152         3GARNER 115.00         PV         Solar         2.545         Solar         2.545           Distribute                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Distributed Generation     | 305061             | 3E9-DAWSON 115.00  | PV | Solar     | 1.99      | Solar     | 1.99         |
| Distributed Generation         304572         3ELIZTOWN SU115.00         PV         Solar         4.8         Solar         4.8           Distributed Generation         304227         3ELM CITY 115.00         PV         Solar         9.993         Solar         9.993           Distributed Generation         304202         3ERWIN115 SU115.00         PV         Solar         5.078         Solar         5.078           Distributed Generation         304599         3FAIR BLUFF 115.00         PV         Solar         5         Solar         5           Distributed Generation         304448         3FAIR MONT SU115.00         PV         Solar         27.949         Solar         27.94           Distributed Generation         304613         3FLOS WARBLU115.00         PV         Solar         10.201         Solar         10.20           Distributed Generation         304659         3FLOS WIBITISWT115.00         PV         Solar         1.227         Solar         1.227           Distributed Generation         304240         3FREMONT 115.00         PV         Solar         12.401         Solar         2.42           Distributed Generation         304153         3GARNER TRYO115.00         PV         Solar         2.545         Solar         <                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Distributed Generation     | 305062             | 3E9-EAGLE NS115.00 | PV | Solar     | 5.002     | Solar     | 5.002        |
| Distributed Generation         304227         3ELM CITY 115.00         PV         Solar         9.993         Solar         9.993           Distributed Generation         304202         3ERWIN115 SU115.00         PV         Solar         5.078         Solar         5.078           Distributed Generation         304448         3FAIR BLUFF 115.00         PV         Solar         5         Solar         27.949           Distributed Generation         304613         3FLOR MARBLU115.00         PV         Solar         10.201         Solar         10.20           Distributed Generation         304659         3FLOSUBI15WT115.00         PV         Solar         1.227         Solar         1.227           Distributed Generation         304240         3FREMONT 115.00         PV         Solar         1.227         Solar         1.227           Distributed Generation         304152         3GARNER 115.00         PV         Solar         5.453         Solar         5.452           Distributed Generation         304153         3GARNER TRY0115.00         PV         Solar         2.545         Solar         2.545           Distributed Generation         304410         3GODWIN 115.00         PV         Solar         14.182         Solar                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Distributed Generation     | 304565             | 3EAGLE ISLAN115.00 | PV | Solar     | 3.634     | Solar     | 3.634        |
| Distributed Generation         304202         3ERWIN115 SU115.00         PV         Solar         5.078         Solar         5.078           Distributed Generation         304599         3FAIR BLUFF 115.00         PV         Solar         5         Solar         5           Distributed Generation         304448         3FAIRMONT SU115.00         PV         Solar         27.949         Solar         27.94           Distributed Generation         304613         3FLOR MARBLU115.00         PV         Solar         10.201         Solar         10.20           Distributed Generation         304659         3FLOSUBI15WT115.00         PV         Solar         1.227         Solar         1.227           Distributed Generation         304240         3FREMONT 115.00         PV         Solar         12.401         Solar         12.40           Distributed Generation         304152         3GARNER 115.00         PV         Solar         5.453         Solar         5.453           Distributed Generation         304410         3GODWIN 115.00         PV         Solar         18.414         Solar         18.41           Distributed Generation         304428         3GOLDSB LANG115.00         PV         Solar         14.182         Solar                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Distributed Generation     | 304572             | 3ELIZTOWN SU115.00 | PV | Solar     | 4.8       | Solar     | 4.8          |
| Distributed Generation         304599         3FAIR BLUFF 115.00         PV         Solar         5         Solar         5           Distributed Generation         304448         3FAIR MONT SU115.00         PV         Solar         27.949         Solar         27.94           Distributed Generation         304613         3FLOR MARBLU115.00         PV         Solar         10.201         Solar         10.20           Distributed Generation         304659         3FLOSUB115WT115.00         PV         Solar         1.227         Solar         1.227           Distributed Generation         304240         3FREMONT 115.00         PV         Solar         12.401         Solar         12.40           Distributed Generation         304152         3GARNER 115.00         PV         Solar         5.453         Solar         5.453           Distributed Generation         304153         3GARNER TRYO115.00         PV         Solar         2.545         Solar         2.545           Distributed Generation         304410         3GODDWIN 115.00         PV         Solar         14.182         Solar         18.41           Distributed Generation         304459         3GRIFTON 115.00         PV         Solar         25.215         Solar         2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Distributed Generation     | 304227             | 3ELM CITY 115.00   | PV | Solar     | 9.993     | Solar     | 9.993        |
| Distributed Generation         304448         3FAIRMONT SU115.00         PV         Solar         27.949         Solar         27.949           Distributed Generation         304613         3FLOR MARBLU115.00         PV         Solar         10.201         Solar         10.20           Distributed Generation         304659         3FLOSUBI15WT115.00         PV         Solar         1.227         Solar         1.227           Distributed Generation         304240         3FREMONT 115.00         BG         Biogas         4.2         Biogas         4.2           Distributed Generation         304152         3GARNER 115.00         PV         Solar         5.453         Solar         5.453           Distributed Generation         304153         3GARNER 115.00         PV         Solar         2.545         Solar         2.545           Distributed Generation         304410         3GODWIN 115.00         PV         Solar         18.414         Solar         18.41           Distributed Generation         304459         3GRIFTON 115.00         PV         Solar         25.215         Solar         25.21           Distributed Generation         304645         3HEMINGWAY 115.00         PV         Solar         13.404         Solar         1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Distributed Generation     | 304202             | 3ERWIN115 SU115.00 | PV | Solar     | 5.078     | Solar     | 5.078        |
| Distributed Generation         304613         3FLOR MARBLU115.00         PV         Solar         10.201         Solar         10.201           Distributed Generation         304659         3FLOSUB115WT115.00         PV         Solar         1.227         Solar         1.227           Distributed Generation         304240         3FREMONT 115.00         BG         Biogas         4.2         Biogas         4.2           Distributed Generation         304152         3GARNER 115.00         PV         Solar         5.453         Solar         5.453           Distributed Generation         304153         3GARNER 115.00         PV         Solar         2.545         Solar         2.545           Distributed Generation         304410         3GODWIN 115.00         PV         Solar         18.414         Solar         18.41           Distributed Generation         3044282         3GOLDSB LANG115.00         PV         Solar         14.182         Solar         14.18           Distributed Generation         304459         3GRIFTON 115.00         PV         Solar         25.215         Solar         25.21           Distributed Generation         304645         3HEMINGWAY 115.00         PV         Solar         10.086         Solar                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Distributed Generation     | 304599             | 3FAIR BLUFF 115.00 | PV | Solar     | 5         | Solar     | 5            |
| Distributed Generation         304659         3FLOSUB115WT115.00         PV         Solar         1.227         Solar         1.227           Distributed Generation         304240         3FREMONT 115.00         BG         Biogas         4.2         Biogas         4.2           Distributed Generation         304152         3GARNER 115.00         PV         Solar         5.453         Solar         5.453           Distributed Generation         304153         3GARNER 115.00         PV         Solar         2.545         Solar         2.545           Distributed Generation         304410         3GODWIN 115.00         PV         Solar         18.414         Solar         18.41           Distributed Generation         3044282         3GOLDSB LANG115.00         PV         Solar         14.182         Solar         14.18           Distributed Generation         304459         3GRIFTON 115.00         PV         Solar         25.215         Solar         25.21           Distributed Generation         304715         3HARTSVILLE 115.00         PV         Solar         13.404         Solar         13.40           Distributed Generation         304101         3HENDER NORT115.00         PV         Solar         25.115         Solar                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Distributed Generation     | 304448             | 3FAIRMONT SU115.00 | PV | Solar     | 27.949    | Solar     | 27.94        |
| Distributed Generation         304240         3FREMONT 115.00         BG         Biogas         4.2         Biogas         4.2           Distributed Generation         304240         3FREMONT 115.00         PV         Solar         12.401         Solar         12.40           Distributed Generation         304152         3GARNER 115.00         PV         Solar         5.453         Solar         5.453           Distributed Generation         304153         3GARNER TRYO115.00         PV         Solar         2.545         Solar         2.545           Distributed Generation         304410         3GODWIN 115.00         PV         Solar         18.414         Solar         18.41           Distributed Generation         3044282         3GOLDSB LANG115.00         PV         Solar         14.182         Solar         14.18           Distributed Generation         304459         3GRIFTON 115.00         PV         Solar         25.215         Solar         25.21           Distributed Generation         304715         3HARTSVILLE 115.00         PV         Solar         13.404         Solar         13.40           Distributed Generation         304645         3HEMINGWAY 115.00         PV         Solar         25.115         Solar <td< td=""><td>Distributed Generation</td><td>304613</td><td>3FLOR MARBLU115.00</td><td>PV</td><td>Solar</td><td>10.201</td><td>Solar</td><td>10.20</td></td<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Distributed Generation     | 304613             | 3FLOR MARBLU115.00 | PV | Solar     | 10.201    | Solar     | 10.20        |
| Distributed Generation         304240         3FREMONT 115.00         PV         Solar         12.401         Solar         12.40           Distributed Generation         304152         3GARNER 115.00         PV         Solar         5.453         Solar         5.453           Distributed Generation         304153         3GARNER TRYO115.00         PV         Solar         2.545         Solar         2.545           Distributed Generation         304410         3GODWIN 115.00         PV         Solar         18.414         Solar         18.41           Distributed Generation         304282         3GOLDSB LANG115.00         PV         Solar         14.182         Solar         14.18           Distributed Generation         304459         3GRIFTON 115.00         PV         Solar         25.215         Solar         25.21           Distributed Generation         304715         3HARTSVILLE 115.00         PV         Solar         13.404         Solar         13.40           Distributed Generation         304645         3HEMINGWAY 115.00         PV         Solar         10.086         Solar         10.08           Distributed Generation         304277         3IND 304277 115.00         PV         Solar         25.115         Solar                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Distributed Generation     | 304659             | 3FLOSUB115WT115.00 | PV | Solar     | 1.227     | Solar     | 1.227        |
| Distributed Generation         304152         3GARNER 115.00         PV         Solar         5.453         Solar         5.453           Distributed Generation         304153         3GARNER TRYO115.00         PV         Solar         2.545         Solar         2.545           Distributed Generation         304410         3GODWIN 115.00         PV         Solar         18.414         Solar         18.41           Distributed Generation         304282         3GOLDSB LANG115.00         PV         Solar         14.182         Solar         14.18           Distributed Generation         304459         3GRIFTON 115.00         PV         Solar         25.215         Solar         25.21           Distributed Generation         304715         3HARTSVILLE 115.00         PV         Solar         13.404         Solar         13.40           Distributed Generation         304645         3HEMINGWAY 115.00         PV         Solar         10.086         Solar         10.08           Distributed Generation         304277         3IND 304277 115.00         PV         Solar         25.115         Solar         3           Distributed Generation         304321         3IND 304321 115.00         PV         Solar         19.8         Solar         <                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Distributed Generation     | 304240             | 3FREMONT 115.00    | BG | Biogas    | 4.2       | Biogas    | 4.2          |
| Distributed Generation         304153         3GARNER TRYO115.00         PV         Solar         2.545         Solar         2.545           Distributed Generation         304410         3GODWIN 115.00         PV         Solar         18.414         Solar         18.41           Distributed Generation         304282         3GOLDSB LANG115.00         PV         Solar         14.182         Solar         14.18           Distributed Generation         304459         3GRIFTON 115.00         PV         Solar         25.215         Solar         25.21           Distributed Generation         304715         3HARTSVILLE 115.00         PV         Solar         13.404         Solar         13.40           Distributed Generation         304645         3HEMINGWAY 115.00         PV         Solar         10.086         Solar         10.08           Distributed Generation         304101         3HENDER NORT115.00         PV         Solar         25.115         Solar         25.11           Distributed Generation         304277         3IND 304277 115.00         PV         Solar         3         Solar         3           Distributed Generation         304321         3IND 304420 115.00         PV         Solar         19.8         Solar         <                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Distributed Generation     | 304240             | 3FREMONT 115.00    | PV | Solar     | 12.401    | Solar     | 12.40        |
| Distributed Generation         304410         3GODWIN         115.00         PV         Solar         18.414         Solar         18.41           Distributed Generation         304282         3GOLDSB LANG115.00         PV         Solar         14.182         Solar         14.18           Distributed Generation         304459         3GRIFTON         115.00         PV         Solar         25.215         Solar         25.21           Distributed Generation         304715         3HARTSVILLE 115.00         PV         Solar         13.404         Solar         13.40           Distributed Generation         304645         3HEMINGWAY 115.00         PV         Solar         10.086         Solar         10.08           Distributed Generation         304101         3HENDER NORT115.00         PV         Solar         25.115         Solar         25.11           Distributed Generation         304277         3IND 304277 115.00         PV         Solar         3         Solar         3           Distributed Generation         304321         3IND 304321 115.00         PV         Solar         19.8         Solar         19.8           Distributed Generation         304476         3IND 304476 115.00         A         Biogas         38                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Distributed Generation     | 304152             | 3GARNER 115.00     | PV | Solar     | 5.453     | Solar     | 5.453        |
| Distributed Generation         304282         3GOLDSB LANG115.00         PV         Solar         14.182         Solar         14.18           Distributed Generation         304459         3GRIFTON 115.00         PV         Solar         25.215         Solar         25.21           Distributed Generation         304715         3HARTSVILLE 115.00         PV         Solar         13.404         Solar         13.40           Distributed Generation         304645         3HEMINGWAY 115.00         PV         Solar         10.086         Solar         10.08           Distributed Generation         304101         3HENDER NORT115.00         PV         Solar         25.115         Solar         25.11           Distributed Generation         304277         3IND 304277 115.00         PV         Solar         3         Solar         3           Distributed Generation         304321         3IND 304321 115.00         PV         Solar         9.994         Solar         9.994           Distributed Generation         304420         3IND 304420 115.00         PV         Solar         19.8         Solar         19.8           Distributed Generation         304476         3IND 304476 115.00         PV         Solar         10.407         Solar                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Distributed Generation     | 304153             | 3GARNER TRYO115.00 | PV | Solar     | 2.545     | Solar     | 2.545        |
| Distributed Generation         304459         3GRIFTON 115.00         PV         Solar         25.215         Solar         25.21           Distributed Generation         304715         3HARTSVILLE 115.00         PV         Solar         13.404         Solar         13.40           Distributed Generation         304645         3HEMINGWAY 115.00         PV         Solar         10.086         Solar         10.08           Distributed Generation         304101         3HENDER NORT115.00         PV         Solar         25.115         Solar         25.11           Distributed Generation         304277         3IND 304277 115.00         PV         Solar         3         Solar         3           Distributed Generation         304321         3IND 304321 115.00         PV         Solar         9.994         Solar         9.994           Distributed Generation         304420         3IND 304420 115.00         PV         Solar         19.8         Solar         19.8           Distributed Generation         304566         3IND 304476 115.00         PV         Solar         10.407         Solar         10.40                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Distributed Generation     | 304410             | 3GODWIN 115.00     | PV | Solar     | 18.414    | Solar     | 18.41        |
| Distributed Generation         304715         3HARTSVILLE 115.00         PV         Solar         13.404         Solar         13.40           Distributed Generation         304645         3HEMINGWAY 115.00         PV         Solar         10.086         Solar         10.08           Distributed Generation         304101         3HENDER NORT115.00         PV         Solar         25.115         Solar         25.11           Distributed Generation         304277         3IND 304277 115.00         PV         Solar         3         Solar         3           Distributed Generation         304321         3IND 304321 115.00         PV         Solar         9.994         Solar         9.994           Distributed Generation         304420         3IND 304420 115.00         PV         Solar         19.8         Solar         19.8           Distributed Generation         304476         3IND 304476 115.00         A         Biogas         38         Biogas         38           Distributed Generation         304566         3IND 304566 115.00         PV         Solar         10.407         Solar         10.40                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Distributed Generation     | 304282             | 3GOLDSB LANG115.00 | PV | Solar     | 14.182    | Solar     | 14.18        |
| Distributed Generation         304645         3HEMINGWAY 115.00         PV         Solar         10.086         Solar         10.08           Distributed Generation         304101         3HENDER NORT115.00         PV         Solar         25.115         Solar         25.11           Distributed Generation         304277         3IND 304277 115.00         PV         Solar         3         Solar         3           Distributed Generation         304321         3IND 304321 115.00         PV         Solar         9.994         Solar         9.994           Distributed Generation         304420         3IND 304420 115.00         PV         Solar         19.8         Solar         19.8           Distributed Generation         304476         3IND 304476 115.00         A         Biogas         38         Biogas         38           Distributed Generation         304566         3IND 304566 115.00         PV         Solar         10.407         Solar         10.40                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Distributed Generation     | 304459             | 3GRIFTON 115.00    | PV | Solar     | 25.215    | Solar     | 25.21        |
| Distributed Generation         304101         3HENDER NORT115.00         PV         Solar         25.115         Solar         25.11           Distributed Generation         304277         3IND 304277 115.00         PV         Solar         3         Solar         3           Distributed Generation         304321         3IND 304321 115.00         PV         Solar         9.994         Solar         9.994           Distributed Generation         304420         3IND 304420 115.00         PV         Solar         19.8         Solar         19.8           Distributed Generation         304476         3IND 304476 115.00         A         Biogas         38         Biogas         38           Distributed Generation         304566         3IND 304566 115.00         PV         Solar         10.407         Solar         10.40                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Distributed Generation     | 304715             | 3HARTSVILLE 115.00 | PV | Solar     | 13.404    | Solar     | 13.40        |
| Distributed Generation         304277         3IND 304277 115.00         PV         Solar         3         Solar         3           Distributed Generation         304321         3IND 304321 115.00         PV         Solar         9.994         Solar         9.994           Distributed Generation         304420         3IND 304420 115.00         PV         Solar         19.8         Solar         19.8           Distributed Generation         304476         3IND 304476 115.00         A         Biogas         38         Biogas         38           Distributed Generation         304566         3IND 304566 115.00         PV         Solar         10.407         Solar         10.40                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Distributed Generation     | 304645             | 3HEMINGWAY 115.00  | PV | Solar     | 10.086    | Solar     | 10.08        |
| Distributed Generation         304321         3IND 304321 115.00         PV         Solar         9.994         Solar         9.994           Distributed Generation         304420         3IND 304420 115.00         PV         Solar         19.8         Solar         19.8           Distributed Generation         304476         3IND 304476 115.00         A         Biogas         38         Biogas         38           Distributed Generation         304566         3IND 304566 115.00         PV         Solar         10.407         Solar         10.40                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Distributed Generation     | 304101             | 3HENDER NORT115.00 | PV | Solar     | 25.115    | Solar     | 25.11        |
| Distributed Generation         304420         3IND 304420 115.00         PV         Solar         19.8         Solar         19.8           Distributed Generation         304476         3IND 304476 115.00         A         Biogas         38         Biogas         38           Distributed Generation         304566         3IND 304566 115.00         PV         Solar         10.407         Solar         10.40                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Distributed Generation     | 304277             | 3IND 304277 115.00 | PV | Solar     | 3         | Solar     | 3            |
| Distributed Generation         304476         3IND 304476 115.00         A         Biogas         38         Biogas         38           Distributed Generation         304566         3IND 304566 115.00         PV         Solar         10.407         Solar         10.40                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Distributed Generation     | 304321             | 3IND 304321 115.00 | PV | Solar     | 9.994     | Solar     | 9.994        |
| Distributed Generation 304566 3IND 304566 115.00 PV Solar 10.407 Solar 10.40                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Distributed Generation     | 304420             | 3IND 304420 115.00 | PV | Solar     | 19.8      | Solar     | 19.8         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Distributed Generation     | 304476             | 3IND 304476 115.00 | Α  | Biogas    | 38        | Biogas    | 38           |
| Distributed Generation 304593 3IND 304593 115.00 PV Solar 10.011 Solar 10.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Distributed Generation     | 304566             | 3IND 304566 115.00 | PV | Solar     | 10.407    | Solar     | 10.40        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Distributed Generation     | 304593             | 3IND 304593 115.00 | PV | Solar     | 10.011    | Solar     | 10.01        |

| Summer Peak 2026 & 2034 Re | egional SERTP V3 I | Models             |    | 20          | )26       | 203         | 4            |
|----------------------------|--------------------|--------------------|----|-------------|-----------|-------------|--------------|
| Plant                      | Bus<br>Number      | Bus Name           | Id | Fuel Type   | Pmax (MW) | Fuel Type   | Pmax<br>(MW) |
| Industrial Gen.            | 304641             | 3IND 304641 115.00 | 1  | Coal/Biogas | 68        | Coal/Biogas | 68           |
| Distributed Generation     | 304692             | 3IND 304692 115.00 | BG | Biogas      | 1.546     | Biogas      | 1.546        |
| Distributed Generation     | 304714             | 3JEFFERSN SU115.00 | PV | Solar       | 2.012     | Solar       | 2.012        |
| Distributed Generation     | 304273             | 3KORNEGAY SU115.00 | PV | Solar       | 16.798    | Solar       | 16.798       |
| Distributed Generation     | 304288             | 3LAGRANGE 115.00   | PV | Solar       | 20.02     | Solar       | 20.02        |
| Distributed Generation     | 304575             | 3LAKE WACCA 115.00 | PV | Solar       | 5.04      | Solar       | 5.04         |
| Distributed Generation     | 304367             | 3LAKEVIEW 115.00   | PV | Solar       | 5.032     | Solar       | 5.032        |
| Distributed Generation     | 304421             | 3LAURNB115WT115.00 | PV | Solar       | 21.304    | Solar       | 21.304       |
| Distributed Generation     | 304326             | 3LIBERTY 115.00    | PV | Solar       | 12.09     | Solar       | 12.09        |
| Distributed Generation     | 304220             | 3LILLINGTON 115.00 | PV | Solar       | 15.572    | Solar       | 15.572       |
| Distributed Generation     | 304108             | 3LOUISBURG 115.00  | PV | Solar       | 18.876    | Solar       | 18.876       |
| Distributed Generation     | 304681             | 3MANNING 115.00    | PV | Solar       | 4.084     | Solar       | 4.084        |
| Distributed Generation     | 304647             | 3MAR BYPASS 115.00 | PV | Solar       | 19.677    | Solar       | 19.677       |
| Distributed Generation     | 304632             | 3MARION115 T115.00 | PV | Solar       | 9.1       | Solar       | 9.1          |
| Distributed Generation     | 304435             | 3MAXTON 115.00     | PV | Solar       | 23.62     | Solar       | 23.62        |
| Distributed Generation     | 304134             | 3MONCURE 115.00    | HY | Hydro       | 5.9       | Hydro       | 5.9          |
| Distributed Generation     | 304134             | 3MONCURE 115.00    | PV | Solar       | 8.35      | Solar       | 8.35         |
| Distributed Generation     | 304269             | 3MT OLV SUB 115.00 | PV | Solar       | 18.475    | Solar       | 18.475       |
| Distributed Generation     | 304270             | 3MT OLV WEST115.00 | PV | Solar       | 23.995    | Solar       | 23.995       |
| Distributed Generation     | 304341             | 3MTGILEAD 115.00   | PV | Solar       | 3.528     | Solar       | 3.528        |
| Distributed Generation     | 304630             | 3MULLINS 115.00    | PV | Solar       | 6.135     | Solar       | 6.135        |
| Distributed Generation     | 304116             | 3NASHVILLE 115.00  | PV | Solar       | 12.243    | Solar       | 12.243       |
| NCSU Gen.                  | 304011             | 3NCSU GEN 115.00   | 1  | Natural Gas | 11        | Natural Gas | 11           |
| Distributed Generation     | 304283             | 3NEW HOPE 115.00   | PV | Solar       | 10.284    | Solar       | 10.284       |
| Distributed Generation     | 304629             | 3NICHOLS 115.00    | PV | Solar       | 5.071     | Solar       | 5.071        |
| Distributed Generation     | 304481             | 3PA-AYDEN 115.00   | PV | Solar       | 4.999     | Solar       | 4.999        |
| Distributed Generation     | 304508             | 3PA-KINSTON 115.00 | PV | Solar       | 4.999     | Solar       | 4.999        |
| Distributed Generation     | 304439             | 3PA-LUMB#4 115.00  | PV | Solar       | 2.036     | Solar       | 2.036        |
|                            |                    |                    |    |             |           |             |              |

| Plant         Bus Number Number         Bus Name         Id         Fuel Type         Pmax (MW)         Fuel Type           Distributed Generation         304644         3PAMPLICO 115.00         PV         Solar         6.867         Solar           Distributed Generation         304235         3PA-W-11 115.00         PV         Solar         19.998         Solar           Distributed Generation         304236         3PA-W-28.3 115.00         PV         Solar         20         Solar           Distributed Generation         304244         3PA-W-5 115.00         PV         Solar         20         Solar           Distributed Generation         304252         3PRINCETON 115.00         PV         Solar         20.122         Solar           Distributed Generation         304413         3RAEFORD NOR115.00         PV         Solar         10.229         Solar           Distributed Generation         304381         3RAEFORD SOU230.00         PV         Solar         10         Solar           Distributed Generation         304146         3RAL NRTHSID115.00         PV         Solar         11         Solar           Distributed Generation         304328         3RAMSEUR 115115.00         PV         Solar         1,225         Hydro <th colspan="2">2034</th> | 2034       |  |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|--|
| Distributed Generation         304235         3PA-W-11         115.00         PV         Solar         19.998         Solar           Distributed Generation         304236         3PA-W-2&3         115.00         PV         Solar         28.5         Solar           Distributed Generation         304244         3PA-W-5         115.00         PV         Solar         20         Solar           Distributed Generation         304436         3PEMBROKE         115.00         PV         Solar         20.122         Solar           Distributed Generation         304413         3RAEFORD NOR115.00         PV         Solar         10.229         Solar           Distributed Generation         304381         3RAEFORD SOU230.00         PV         Solar         10         Solar           Distributed Generation         304146         3RAL NRTHSID115.00         PV         Solar         1.111         Solar           Distributed Generation         304328         3RAMSEUR 115115.00         PV         Solar         19.902         Solar           Distributed Generation         304298         3ROBBINS 115.00         PV         Solar         5.022         Solar           Distributed Generation         304320         3ROCKHAM SUB115.00                                         | Pma<br>(MW |  |
| Distributed Generation         304236         3PA-W-28.3         115.00         PV         Solar         28.5         Solar           Distributed Generation         304244         3PA-W-5         115.00         PV         Solar         20         Solar           Distributed Generation         304436         3PEMBROKE 115.00         PV         Solar         16.216         Solar           Distributed Generation         304413         3RAEFORD NOR115.00         PV         Solar         10.229         Solar           Distributed Generation         304381         3RAEFORD SOU230.00         PV         Solar         10         Solar           Distributed Generation         304146         3RAL NRTHSID115.00         PV         Solar         1.111         Solar           Distributed Generation         304328         3RAMSEUR 115115.00         PV         Solar         1.225         Hydro           Distributed Generation         304430         3RED SPR SUB115.00         PV         Solar         5.022         Solar           Distributed Generation         304298         3ROBBINS         115.00         PV         Solar         5.062         Solar           Distributed Generation         304345         3ROCKHAM WES115.00         PV                                    | 6.86       |  |
| Distributed Generation         304244         3PA-W-5         115.00         PV         Solar         20         Solar           Distributed Generation         304436         3PEMBROKE 115.00         PV         Solar         16.216         Solar           Distributed Generation         304252         3PRINCETON 115.00         PV         Solar         20.122         Solar           Distributed Generation         304413         3RAEFORD NOR115.00         PV         Solar         10.229         Solar           Distributed Generation         304381         3RAEFORD SOU230.00         PV         Solar         10         Solar           Distributed Generation         304146         3RAL NRTHSID115.00         PV         Solar         1.111         Solar           Distributed Generation         304328         3RAMSEUR 115115.00         PV         Solar         1.225         Hydro           Distributed Generation         304430         3RED SPR SUB115.00         PV         Solar         19.902         Solar           Distributed Generation         304298         3ROBBINS 115.00         PV         Solar         5.022         Solar           Distributed Generation         304345         3ROCKHAM WES115.00         PV         Solar         5.0                       | 19.99      |  |
| Distributed Generation         304436         3PEMBROKE 115.00         PV         Solar         16.216         Solar           Distributed Generation         304252         3PRINCETON 115.00         PV         Solar         20.122         Solar           Distributed Generation         304413         3RAEFORD NOR115.00         PV         Solar         10.229         Solar           Distributed Generation         304381         3RAEFORD SOU230.00         PV         Solar         10         Solar           Distributed Generation         304146         3RAL NRTHSID115.00         PV         Solar         1.111         Solar           Distributed Generation         304328         3RAMSEUR 115115.00         HY         Hydro         1.225         Hydro           Distributed Generation         304430         3RED SPR SUB115.00         PV         Solar         19.902         Solar           Distributed Generation         304298         3ROBBINS 115.00         PV         Solar         5.022         Solar           Distributed Generation         304345         3ROCKHAM WES115.00         PV         Solar         5.066         Solar           Distributed Generation         304260         3ROSEBORO 115.00         PV         Solar         10.069                       | 28.5       |  |
| Distributed Generation 304252 3PRINCETON 115.00 PV Solar 20.122 Solar Distributed Generation 304413 3RAEFORD NOR115.00 PV Solar 10.229 Solar Distributed Generation 304381 3RAEFORD SOU230.00 PV Solar 10 Solar Distributed Generation 304416 3RAL NRTHSID115.00 PV Solar 1.111 Solar Distributed Generation 304328 3RAMSEUR 115115.00 PV Solar 1.225 Hydro Distributed Generation 304430 3RED SPR SUB115.00 PV Solar 19.902 Solar Distributed Generation 304298 3ROBBINS 115.00 PV Solar 5.022 Solar Distributed Generation 304320 3ROCKHAM SUB115.00 PV Solar 5.069 Solar Distributed Generation 304345 3ROCKHAM WES115.00 PV Solar 5.066 Solar Distributed Generation 304260 3ROSEBORO 115.00 PV Solar 11.036 Solar Distributed Generation 304250 3ROSEBORO 115.00 PV Solar 10.069 Solar Distributed Generation 304092 3ROXBOR 115T115.00 PV Solar 9.087 Solar Distributed Generation 304092 3ROXBOR 115T115.00 PV Solar 9.087 Solar Distributed Generation 304303 3SEAGROVE 115.00 PV Solar 9.483 Solar Distributed Generation 30431 3SHANNON 115.00 PV Solar 15.723 Solar Distributed Generation 304431 3SHANNON 115.00 PV Solar 20.432 Solar Distributed Generation 304431 3SHANNON 115.00 PV Solar 19.882 Solar Distributed Generation 304335 3SILER CITY 115.00 PV Solar 19.882 Solar                           | 20         |  |
| Distributed Generation 304413 3RAEFORD NOR115.00 PV Solar 10.229 Solar Distributed Generation 304381 3RAEFORD SOU230.00 PV Solar 10 Solar Distributed Generation 304146 3RAL NRTHSID115.00 PV Solar 1.111 Solar Distributed Generation 304328 3RAMSEUR 115115.00 HY Hydro 1.225 Hydro Distributed Generation 304430 3RED SPR SUB115.00 PV Solar 19.902 Solar Distributed Generation 304298 3ROBBINS 115.00 PV Solar 5.022 Solar Distributed Generation 304320 3ROCKHAM SUB115.00 PV Solar 5.069 Solar Distributed Generation 304345 3ROCKHAM WES115.00 PV Solar 5.066 Solar Distributed Generation 304260 3ROSEBORO 115.00 PV Solar 11.036 Solar Distributed Generation 304250 3ROSEBORO 115.00 PV Solar 11.036 Solar Distributed Generation 304092 3ROXBOR 115.100 PV Solar 9.087 Solar Distributed Generation 304609 3SAMARIA 115.00 PV Solar 9.087 Solar Distributed Generation 304303 3SEAGROVE 115.00 PV Solar 9.483 Solar Distributed Generation 304431 3SHANNON 115.00 PV Solar 20.432 Solar Distributed Generation 304431 3SHANNON 115.00 PV Solar 20.432 Solar Distributed Generation 304335 3SILER CITY 115.00 PV Solar 19.882 Solar Distributed Generation 304335 3SILER CITY 115.00 PV Solar 19.882 Solar                                                                                                   | 16.21      |  |
| Distributed Generation 304381 3RAEFORD SOU230.00 PV Solar 10 Solar Distributed Generation 304146 3RAL NRTHSID115.00 PV Solar 1.111 Solar Distributed Generation 304328 3RAMSEUR 115115.00 HY Hydro 1.225 Hydro Distributed Generation 30430 3RED SPR SUB115.00 PV Solar 19.902 Solar Distributed Generation 304298 3ROBBINS 115.00 PV Solar 5.022 Solar Distributed Generation 304320 3ROCKHAM SUB115.00 PV Solar 5.069 Solar Distributed Generation 304345 3ROCKHAM WES115.00 PV Solar 5.066 Solar Distributed Generation 304260 3ROSEBORO 115.00 PV Solar 5.066 Solar Distributed Generation 304250 3ROSEBORO 115.00 PV Solar 11.036 Solar Distributed Generation 304092 3ROSEWOOD 115.00 PV Solar 10.069 Solar Distributed Generation 304609 3SAMARIA 115.00 PV Solar 9.087 Solar Distributed Generation 304303 3SEAGROVE 115.00 PV Solar 9.483 Solar Distributed Generation 304303 3SEAGROVE 115.00 PV Solar 9.483 Solar Distributed Generation 30431 3SHANNON 115.00 PV Solar 20.432 Solar Distributed Generation 304335 3SILER CITY 115.00 PV Solar 19.882 Solar Distributed Generation 30433 3SILER CITY 115.00 PV Solar 19.882 Solar                                                                                                                                                                            | 20.12      |  |
| Distributed Generation 304146 3RAL NRTHSID115.00 PV Solar 1.111 Solar Distributed Generation 304328 3RAMSEUR 115115.00 HY Hydro 1.225 Hydro Distributed Generation 304430 3RED SPR SUB115.00 PV Solar 19.902 Solar Distributed Generation 304298 3ROBBINS 115.00 PV Solar 5.022 Solar Distributed Generation 304320 3ROCKHAM SUB115.00 PV Solar 5.069 Solar Distributed Generation 304345 3ROCKHAM WES115.00 PV Solar 5.066 Solar Distributed Generation 304260 3ROSEBORO 115.00 PV Solar 11.036 Solar Distributed Generation 304250 3ROSEBORO 115.00 PV Solar 10.069 Solar Distributed Generation 304092 3ROXBOR 115T115.00 PV Solar 9.087 Solar Distributed Generation 304609 3SAMARIA 115.00 PV Solar 9.087 Solar Distributed Generation 304303 3SEAGROVE 115.00 PV Solar 9.483 Solar Distributed Generation 304303 3SEAGROVE 115.00 PV Solar 9.483 Solar Distributed Generation 304431 3SELMA 115 T115.00 PV Solar 20.432 Solar Distributed Generation 304335 3SILER CITY 115.00 PV Solar 19.882 Solar                                                                                                                                                                                                                                                                                                              | 10.22      |  |
| Distributed Generation 304328 3RAMSEUR 115115.00 HY Hydro 1.225 Hydro Distributed Generation 304430 3RED SPR SUB115.00 PV Solar 19.902 Solar Distributed Generation 304298 3ROBBINS 115.00 PV Solar 5.022 Solar Distributed Generation 304320 3ROCKHAM SUB115.00 PV Solar 5.069 Solar Distributed Generation 304345 3ROCKHAM WES115.00 PV Solar 5.066 Solar Distributed Generation 304260 3ROSEBORO 115.00 PV Solar 11.036 Solar Distributed Generation 304250 3ROSEWOOD 115.00 PV Solar 10.069 Solar Distributed Generation 304092 3ROSEWOOD 115.00 PV Solar 9.087 Solar Distributed Generation 304609 3SAMARIA 115.00 PV Solar 29.081 Solar Distributed Generation 304303 3SEAGROVE 115.00 PV Solar 9.483 Solar Distributed Generation 304303 3SEAGROVE 115.00 PV Solar 9.483 Solar Distributed Generation 304431 3SHANNON 115.00 PV Solar 20.432 Solar Distributed Generation 304335 3SILER CITY 115.00 PV Solar 19.882 Solar                                                                                                                                                                                                                                                                                                                                                                                        | 10         |  |
| Distributed Generation 304430 3RED SPR SUB115.00 PV Solar 19.902 Solar Distributed Generation 304298 3ROBBINS 115.00 PV Solar 5.022 Solar Distributed Generation 304320 3ROCKHAM SUB115.00 PV Solar 5.069 Solar Distributed Generation 304345 3ROCKHAM WES115.00 PV Solar 5.066 Solar Distributed Generation 304260 3ROSEBORO 115.00 PV Solar 11.036 Solar Distributed Generation 304250 3ROSEBORO 115.00 PV Solar 10.069 Solar Distributed Generation 304092 3ROXBOR 115T115.00 PV Solar 9.087 Solar Distributed Generation 304609 3SAMARIA 115.00 PV Solar 29.081 Solar Distributed Generation 304303 3SEAGROVE 115.00 PV Solar 9.483 Solar Distributed Generation 304431 3SELMA 115 T115.00 PV Solar 20.432 Solar Distributed Generation 304335 3SILER CITY 115.00 PV Solar 19.882 Solar                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1.11       |  |
| Distributed Generation 304298 3ROBBINS 115.00 PV Solar 5.022 Solar Distributed Generation 304320 3ROCKHAM SUB115.00 PV Solar 5.069 Solar Distributed Generation 304345 3ROCKHAM WES115.00 PV Solar 5.066 Solar Distributed Generation 304260 3ROSEBORO 115.00 PV Solar 11.036 Solar Distributed Generation 304250 3ROSEWOOD 115.00 PV Solar 10.069 Solar Distributed Generation 304092 3ROXBOR 115T115.00 PV Solar 9.087 Solar Distributed Generation 304609 3SAMARIA 115.00 PV Solar 29.081 Solar Distributed Generation 304303 3SEAGROVE 115.00 PV Solar 9.483 Solar Distributed Generation 304177 3SELMA 115 T115.00 PV Solar 15.723 Solar Distributed Generation 304431 3SHANNON 115.00 PV Solar 20.432 Solar Distributed Generation 304335 3SILER CITY 115.00 PV Solar 19.882 Solar                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1.22       |  |
| Distributed Generation 304320 3ROCKHAM SUB115.00 PV Solar 5.069 Solar 304345 3ROCKHAM WES115.00 PV Solar 5.066 Solar 5.066 Solar Distributed Generation 304260 3ROSEBORO 115.00 PV Solar 11.036 Solar Distributed Generation 304250 3ROSEWOOD 115.00 PV Solar 10.069 Solar Distributed Generation 304092 3ROXBOR 115T115.00 PV Solar 9.087 Solar Distributed Generation 304609 3SAMARIA 115.00 PV Solar 29.081 Solar Distributed Generation 304303 3SEAGROVE 115.00 PV Solar 9.483 Solar Distributed Generation 304177 3SELMA 115 T115.00 PV Solar 15.723 Solar Distributed Generation 30431 3SHANNON 115.00 PV Solar 20.432 Solar Distributed Generation 304335 3SILER CITY 115.00 PV Solar 19.882 Solar                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 19.90      |  |
| Distributed Generation 304345 3ROCKHAM WES115.00 PV Solar 5.066 Solar 304260 3ROSEBORO 115.00 PV Solar 11.036 Solar Distributed Generation 304250 3ROSEWOOD 115.00 PV Solar 10.069 Solar Distributed Generation 304092 3ROXBOR 115T115.00 PV Solar 9.087 Solar Distributed Generation 304609 3SAMARIA 115.00 PV Solar 29.081 Solar Distributed Generation 304303 3SEAGROVE 115.00 PV Solar 9.483 Solar Distributed Generation 304177 3SELMA 115 T115.00 PV Solar 15.723 Solar Distributed Generation 304431 3SHANNON 115.00 PV Solar 20.432 Solar Distributed Generation 304335 3SILER CITY 115.00 PV Solar 19.882 Solar                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 5.02       |  |
| Distributed Generation 304260 3ROSEBORO 115.00 PV Solar 11.036 Solar 304250 3ROSEWOOD 115.00 PV Solar 10.069 Solar Distributed Generation 304092 3ROXBOR 115T115.00 PV Solar 9.087 Solar Distributed Generation 304609 3SAMARIA 115.00 PV Solar 29.081 Solar Distributed Generation 304303 3SEAGROVE 115.00 PV Solar 9.483 Solar Distributed Generation 304177 3SELMA 115 T115.00 PV Solar 15.723 Solar Distributed Generation 304431 3SHANNON 115.00 PV Solar 20.432 Solar Distributed Generation 304335 3SILER CITY 115.00 PV Solar 19.882 Solar                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 5.06       |  |
| Distributed Generation 304250 3ROSEWOOD 115.00 PV Solar 10.069 Solar Distributed Generation 304092 3ROXBOR 115T115.00 PV Solar 9.087 Solar Distributed Generation 304609 3SAMARIA 115.00 PV Solar 29.081 Solar Distributed Generation 304303 3SEAGROVE 115.00 PV Solar 9.483 Solar Distributed Generation 304177 3SELMA 115 T115.00 PV Solar 15.723 Solar Distributed Generation 304431 3SHANNON 115.00 PV Solar 20.432 Solar Distributed Generation 304335 3SILER CITY 115.00 PV Solar 19.882 Solar                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 5.06       |  |
| Distributed Generation 304092 3ROXBOR 115T115.00 PV Solar 9.087 Solar Distributed Generation 304609 3SAMARIA 115.00 PV Solar 29.081 Solar Distributed Generation 304303 3SEAGROVE 115.00 PV Solar 9.483 Solar Distributed Generation 304177 3SELMA 115 T115.00 PV Solar 15.723 Solar Distributed Generation 304431 3SHANNON 115.00 PV Solar 20.432 Solar Distributed Generation 304335 3SILER CITY 115.00 PV Solar 19.882 Solar                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 11.03      |  |
| Distributed Generation 304609 3SAMARIA 115.00 PV Solar 29.081 Solar Distributed Generation 304303 3SEAGROVE 115.00 PV Solar 9.483 Solar Distributed Generation 304177 3SELMA 115 T115.00 PV Solar 15.723 Solar Distributed Generation 304431 3SHANNON 115.00 PV Solar 20.432 Solar Distributed Generation 304335 3SILER CITY 115.00 PV Solar 19.882 Solar                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 10.06      |  |
| Distributed Generation 304303 3SEAGROVE 115.00 PV Solar 9.483 Solar Distributed Generation 304177 3SELMA 115 T115.00 PV Solar 15.723 Solar Distributed Generation 304431 3SHANNON 115.00 PV Solar 20.432 Solar Distributed Generation 304335 3SILER CITY 115.00 PV Solar 19.882 Solar                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 9.08       |  |
| Distributed Generation 304177 3SELMA 115 T115.00 PV Solar 15.723 Solar Distributed Generation 304431 3SHANNON 115.00 PV Solar 20.432 Solar Distributed Generation 304335 3SILER CITY 115.00 PV Solar 19.882 Solar                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 29.08      |  |
| Distributed Generation 304431 3SHANNON 115.00 PV Solar 20.432 Solar Distributed Generation 304335 3SILER CITY 115.00 PV Solar 19.882 Solar                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 9.48       |  |
| Distributed Generation 304335 3SILER CITY 115.00 PV Solar 19.882 Solar                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 15.72      |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 20.43      |  |
| Distributed Generation 304483 3SNOW HILL 115.00 PV Solar 13.99 Solar                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 19.88      |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 13.9       |  |
| Distributed Generation 304110 3SPRING HOPE115.00 PV Solar 6.755 Solar                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 6.75       |  |
| Distributed Generation 304406 3ST PAULS 115.00 PV Solar 19.984 Solar                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 19.98      |  |
| Distributed Generation 304109 3STALLING XR115.00 PV Solar 21.124 Solar                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 21.12      |  |
| Distributed Generation 304596 3TABOR CITY 115.00 PV Solar 17.096 Solar                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 17.09      |  |
| Distributed Generation 304301 3TROY 115.00 HY Hydro 1.782 Hydro                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1.78       |  |

| Summer Peak 2026 & 2034 Regional SERTP V3 Models |               | Models              |    | 2026      |           | 2034      |              |
|--------------------------------------------------|---------------|---------------------|----|-----------|-----------|-----------|--------------|
| Plant                                            | Bus<br>Number | Bus Name            | Id | Fuel Type | Pmax (MW) | Fuel Type | Pmax<br>(MW) |
| Distributed Generation                           | 304301        | 3TROY 115.00        | PV | Solar     | 5.021     | Solar     | 5.021        |
| Distributed Generation                           | 304637        | 3TROY BURN \$115.00 | PV | Solar     | 10.017    | Solar     | 10.017       |
| Industrial Gen.                                  | 304012        | 3UWHARRIE LF115.00  | 1  | Biogas    | 9         | Biogas    | 9            |
| Distributed Generation                           | 304401        | 3VANDERSUB T115.00  | PV | Solar     | 5.155     | Solar     | 5.155        |
| Distributed Generation                           | 304532        | 3VISTA 115.00       | PV | Solar     | 4.695     | Solar     | 4.695        |
| Distributed Generation                           | 304512        | 3WALLACE SUB115.00  | PV | Solar     | 22.313    | Solar     | 22.313       |
| Distributed Generation                           | 304103        | 3WARRENTON 115.00   | PV | Solar     | 31.27     | Solar     | 31.27        |
| Distributed Generation                           | 304623        | 3WHITEVL SUB115.00  | PV | Solar     | 12.172    | Solar     | 12.172       |
| Distributed Generation                           | 304165        | 3ZEBULON SU115.00   | PV | Solar     | 5.585     | Solar     | 5.585        |
| Distributed Generation                           | 304171        | 6AMBERLY 230.00     | PV | Solar     | 1.917     | Solar     | 1.917        |
| Distributed Generation                           | 304214        | 6ANGIER 230.00      | PV | Solar     | 10.07     | Solar     | 10.07        |
| Distributed Generation                           | 304199        | 6ARCH LODGE 230.00  | PV | Solar     | 8.228     | Solar     | 8.228        |
| Distributed Generation                           | 304178        | 6AUBURN 230.00      | PV | Solar     | 1.448     | Solar     | 1.448        |
| Distributed Generation                           | 304075        | 6BAHAMA 230.00      | PV | Solar     | 5.106     | Solar     | 5.106        |
| Distributed Generation                           | 304198        | 6BAILEY 230.00      | PV | Solar     | 24.886    | Solar     | 24.886       |
| Distributed Generation                           | 304462        | 6BAYBORO 230.00     | PV | Solar     | 10.1      | Solar     | 10.1         |
| Distributed Generation                           | 304194        | 6BENSON 230.00      | PV | Solar     | 22.584    | Solar     | 22.584       |
| Distributed Generation                           | 304712        | 6BISHOPVILLE230.00  | PV | Solar     | 33.705    | Solar     | 33.705       |
| Distributed Generation                           | 304215        | 6BUIES CREEK230.00  | PV | Solar     | 12.425    | Solar     | 12.425       |
| Distributed Generation                           | 304334        | 6BYNUM 230.00       | PV | Solar     | 4.733     | Solar     | 4.733        |
| Distributed Generation                           | 304128        | 6CARY EVAN R230.00  | PV | Solar     | 1.337     | Solar     | 1.337        |
| Distributed Generation                           | 304115        | 6CARY TRENTO230.00  | PV | Solar     | 2.326     | Solar     | 2.326        |
| Distributed Generation                           | 304081        | 6CASTALIA 230.00    | PV | Solar     | 18.948    | Solar     | 18.948       |
| Distributed Generation                           | 304521        | 6CATHERN LAK230.00  | BG | Biogas    | 1.753     | Biogas    | 1.753        |
| Distributed Generation                           | 304521        | 6CATHERN LAK230.00  | PV | Solar     | 5.334     | Solar     | 5.334        |
| Distributed Generation                           | 304445        | 6CHOCOWINITY230.00  | PV | Solar     | 34.527    | Solar     | 34.527       |
| Distributed Generation                           | 304664        | 6DILLON MAPL230.00  | PV | Solar     | 10.043    | Solar     | 10.043       |
| Distributed Generation                           | 304506        | 6DOVER 230.00       | PV | Solar     | 17.063    | Solar     | 17.063       |

| Summer Peak 2026 & 2034 Reg | ional SERTP V3 I | Models             |    | 2026      |           | 2034      |              |
|-----------------------------|------------------|--------------------|----|-----------|-----------|-----------|--------------|
| Plant                       | Bus<br>Number    | Bus Name           | Id | Fuel Type | Pmax (MW) | Fuel Type | Pmax<br>(MW) |
| Distributed Generation      | 304197           | 6DUNN 230.00       | PV | Solar     | 7.173     | Solar     | 7.173        |
| Distributed Generation      | 305054           | 6E13-FARMVIL230.00 | BG | Biogas    | 1.75      | Biogas    | 1.75         |
| Distributed Generation      | 305001           | 6E1-CHAD PEA230.00 | PV | Solar     | 1         | Solar     | 1            |
| Distributed Generation      | 305009           | 6E1-DAWSCREE230.00 | PV | Solar     | 1.2       | Solar     | 1.2          |
| Distributed Generation      | 305031           | 6E4-BEVERAGE230.00 | BG | Biogas    | 1.3       | Biogas    | 1.3          |
| Distributed Generation      | 305034           | 6E4-POWELL 230.00  | PV | Solar     | 2.299     | Solar     | 2.299        |
| Distributed Generation      | 305075           | 6E9-W ONSLOW230.00 | PV | Solar     | 1.99      | Solar     | 1.99         |
| Distributed Generation      | 304186           | 6EDMONDSON 230.00  | PV | Solar     | 10.205    | Solar     | 10.205       |
| Distributed Generation      | 304327           | 6ELLERBE 230.00    | PV | Solar     | 2.009     | Solar     | 2.009        |
| Distributed Generation      | 304711           | 6ELLIOTT SUB230.00 | PV | Solar     | 10.015    | Solar     | 10.015       |
| Distributed Generation      | 304289           | 6FARMVILLE 230.00  | PV | Solar     | 5         | Solar     | 5            |
| Distributed Generation      | 304671           | 6FLOR SARDIS230.00 | PV | Solar     | 5.285     | Solar     | 5.285        |
| Distributed Generation      | 304193           | 6FOUR OAKS 230.00  | BG | Biogas    | 1.76      | Biogas    | 1.76         |
| Distributed Generation      | 304193           | 6FOUR OAKS 230.00  | PV | Solar     | 18.264    | Solar     | 18.264       |
| Distributed Generation      | 304213           | 6FUQUAY 230.00     | PV | Solar     | 11.71     | Solar     | 11.71        |
| Distributed Generation      | 304133           | 6FUQUAY BELL230.00 | PV | Solar     | 3.134     | Solar     | 3.134        |
| Distributed Generation      | 304584           | 6GARLAND 230.00    | PV | Solar     | 10.006    | Solar     | 10.006       |
| Distributed Generation      | 304140           | 6GARNER PANT230.00 | PV | Solar     | 1.739     | Solar     | 1.739        |
| Distributed Generation      | 304151           | 6GARNER W OA230.00 | PV | Solar     | 4.246     | Solar     | 4.246        |
| Distributed Generation      | 304267           | 6GRANTHAM 230.00   | BG | Biogas    | 3.18      | Biogas    | 3.18         |
| Distributed Generation      | 304267           | 6GRANTHAM 230.00   | PV | Solar     | 19.448    | Solar     | 19.448       |
| Distributed Generation      | 304180           | 6GREEN LEVEL230.00 | PV | Solar     | 1.14      | Solar     | 1.14         |
| Distributed Generation      | 304452           | 6GREENVILE W230.00 | PV | Solar     | 9.998     | Solar     | 9.998        |
| Distributed Generation      | 304355           | 6HAMLET 230.00     | PV | Solar     | 19.502    | Solar     | 19.502       |
| Distributed Generation      | 304087           | 6HENDER EAST230.00 | PV | Solar     | 33.353    | Solar     | 33.353       |
| Distributed Generation      | 304058           | 6HOLLY SPRG 230.00 | BG | Biogas    | 7.3       | Biogas    | 7.3          |
| Distributed Generation      | 304058           | 6HOLLY SPRG 230.00 | PV | Solar     | 1.195     | Solar     | 1.195        |
| Industrial Gen.             | 304455           | 6IND 304455 230.00 | Α  | Other     | 42        | Other     | 42           |

| Summer Peak 2026 & 2034 Re | egional SERTP V3 I | Models             |    | 2026      |           | 2034      |              |
|----------------------------|--------------------|--------------------|----|-----------|-----------|-----------|--------------|
| Plant                      | Bus<br>Number      | Bus Name           | Id | Fuel Type | Pmax (MW) | Fuel Type | Pmax<br>(MW) |
| Industrial Gen.            | 304472             | 6IND 304472 230.00 | 1  | Biogas    | 45        | Biogas    | 45           |
| Distributed Generation     | 304672             | 6IND 304672 230.00 | PV | Solar     | 4.43      | Solar     | 4.43         |
| Distributed Generation     | 304297             | 6JONESBORO 230.00  | PV | Solar     | 12.014    | Solar     | 12.014       |
| Distributed Generation     | 304676             | 6KINGSTREE N230.00 | PV | Solar     | 11.026    | Solar     | 11.026       |
| Distributed Generation     | 304675             | 6LAKE CITY 230.00  | PV | Solar     | 4.145     | Solar     | 4.145        |
| Distributed Generation     | 304423             | 6LAUREL HILL230.00 | PV | Solar     | 24.949    | Solar     | 24.949       |
| Distributed Generation     | 304422             | 6LAURINBGCIT230.00 | PV | Solar     | 24.984    | Solar     | 24.984       |
| Lejeune Battery            | 304537             | 6LEJEUNE#2 230.00  | ВТ | Battery   | 11        | Battery   | 11           |
| Lejeune Solar              | 304537             | 6LEJEUNE#2 230.00  | PV | Solar     | 12.75     | Solar     | 12.75        |
| Distributed Generation     | 304418             | 6MCCOLL SUB 230.00 | PV | Solar     | 8.947     | Solar     | 8.947        |
| Distributed Generation     | 304463             | 6NEW BERN WE230.00 | BG | Biogas    | 4         | Biogas    | 4            |
| Distributed Generation     | 304463             | 6NEW BERN WE230.00 | PV | Solar     | 25.022    | Solar     | 25.022       |
| Distributed Generation     | 304207             | 6NEWTON GROV230.00 | PV | Solar     | 16.877    | Solar     | 16.877       |
| Distributed Generation     | 304674             | 60LANTA 230.00     | PV | Solar     | 2.077     | Solar     | 2.077        |
| Distributed Generation     | 304086             | 60XFORD NORT230.00 | PV | Solar     | 27.93     | Solar     | 27.93        |
| Distributed Generation     | 304080             | 60XFORD SOUT230.00 | PV | Solar     | 15.835    | Solar     | 15.835       |
| Distributed Generation     | 304229             | 6PA-FARMVILL230.00 | PV | Solar     | 5         | Solar     | 5            |
| Distributed Generation     | 304188             | 6PA-SELMA 230.00   | PV | Solar     | 1.98      | Solar     | 1.98         |
| Distributed Generation     | 304187             | 6PA-SMTHFLD2230.00 | PV | Solar     | 1.98      | Solar     | 1.98         |
| Distributed Generation     | 304246             | 6PA-W12 WEC 230.00 | PV | Solar     | 10        | Solar     | 10           |
| Distributed Generation     | 304473             | 6PA-WASHINTO230.00 | PV | Solar     | 27.5      | Solar     | 27.5         |
| Distributed Generation     | 304333             | 6PITTSBORO 230.00  | PV | Solar     | 10.824    | Solar     | 10.824       |
| Distributed Generation     | 304073             | 6RAL BL RIDG230.00 | PV | Solar     | 1.118     | Solar     | 1.118        |
| Distributed Generation     | 304118             | 6RAL DU AIRP230.00 | PV | Solar     | 1.09      | Solar     | 1.09         |
| Distributed Generation     | 304076             | 6RAL LEESV R230.00 | PV | Solar     | 1.001     | Solar     | 1.001        |
| Distributed Generation     | 304528             | 6RHEMS 230.00      | PV | Solar     | 20.892    | Solar     | 20.892       |
| Distributed Generation     | 304154             | 6ROLESVILLE 230.00 | PV | Solar     | 1.16      | Solar     | 1.16         |
| Distributed Generation     | 304505             | 6ROSE HILL 230.00  | PV | Solar     | 16.953    | Solar     | 16.953       |
|                            |                    |                    |    |           |           |           |              |



| Summer Peak 2026 & 2034 Re | egional SERTP V3 I | Models             |    | 20        | 026       | 2034      |              |
|----------------------------|--------------------|--------------------|----|-----------|-----------|-----------|--------------|
| Plant                      | Bus<br>Number      | Bus Name           | Id | Fuel Type | Pmax (MW) | Fuel Type | Pmax<br>(MW) |
| Distributed Generation     | 304443             | 6ROWLAND SUB230.00 | PV | Solar     | 9.975     | Solar     | 9.975        |
| Distributed Generation     | 304068             | 6ROX BOWMAN 230.00 | PV | Solar     | 15.08     | Solar     | 15.08        |
| Distributed Generation     | 304065             | 6ROXB SOUTH 230.00 | PV | Solar     | 4.126     | Solar     | 4.126        |
| Distributed Generation     | 304376             | 6SANF DP RVR230.00 | PV | Solar     | 10.048    | Solar     | 10.048       |
| Distributed Generation     | 304374             | 6SANF GARDEN230.00 | PV | Solar     | 17.307    | Solar     | 17.307       |
| Distributed Generation     | 304705             | 6SOCIETY HIL230.00 | PV | Solar     | 2.015     | Solar     | 2.015        |
| Distributed Generation     | 304701             | 6SUMMERTON 230.00  | PV | Solar     | 4.095     | Solar     | 4.095        |
| Distributed Generation     | 304703             | 6SUMTER NORT230.00 | PV | Solar     | 2.161     | Solar     | 2.161        |
| Distributed Generation     | 304527             | 6SWANSBORO 230.00  | PV | Solar     | 20.169    | Solar     | 20.169       |
| Distributed Generation     | 304344             | 6WADESBORO 230.00  | PV | Solar     | 20.006    | Solar     | 20.006       |
| Distributed Generation     | 304359             | 6WADESBOW SU230.00 | PV | Solar     | 12.314    | Solar     | 12.314       |
| Distributed Generation     | 304504             | 6WARSAW 230 230.00 | PV | Solar     | 34.963    | Solar     | 34.963       |
| Distributed Generation     | 304446             | 6WEATHERSPOO230.00 | PV | Solar     | 26.373    | Solar     | 26.373       |
| Distributed Generation     | 304191             | 6WENDELL 230.00    | PV | Solar     | 5.26      | Solar     | 5.26         |
| Distributed Generation     | 304360             | 6WEST END SU230.00 | PV | Solar     | 20.251    | Solar     | 20.251       |
| Distributed Generation     | 304620             | 6WILM WIN PR230.00 | PV | Solar     | 1.026     | Solar     | 1.026        |
| Distributed Generation     | 304179             | 6WILSON MILL230.00 | PV | Solar     | 10.638    | Solar     | 10.638       |
| Distributed Generation     | 304095             | 6YANCYVILLE 230.00 | PV | Solar     | 14.99     | Solar     | 14.99        |



#### IX. Appendix 4: Duke Progress West BAA

The following information provides a more granular overview of the Duke Progress West BAA input assumptions and transmission expansion plan that are incorporated in the development of the SERTP regional transmission plan.

Table A4.1: 2024 SERTP Regional Transmission Plan – Transmission Project Snapshot by operating voltage (Duke Progress West BAA)

| Duke Progress West BAA                                  | 100-120 | 121-150 | 151-199 | 200-299 | 300-399 | 400-550 |
|---------------------------------------------------------|---------|---------|---------|---------|---------|---------|
| Duke Progress West BAA                                  | kV      | kV      | kV      | kV      | kV      | kV      |
| Transmission lines – New (Circuit Mi.)                  | 2.2     |         |         | 10      |         |         |
| Transmission Lines – Uprates <sup>1</sup> (Circuit Mi.) |         |         |         |         |         |         |
| Transformers <sup>2</sup> – New                         |         |         |         |         |         |         |
| Transformers <sup>2</sup> – Replacements                |         |         |         |         |         |         |

<sup>1</sup> A transmission line uprate may be the result of reconductoring and/or increasing the operating temperature/voltage along the transmission line.

Table A4.2: Interface commitments<sup>1</sup> modeled in the SERTP Summer Peak models – Duke Progress West BAA

| То                 | 2026 | 2029 | 2034 |
|--------------------|------|------|------|
| Duke Progress East | 0    | 0    | -200 |
| Duke Carolinas     | 0    | 0    | 0    |
| SC                 | -22  | -22  | -22  |
| TVA                | -14  | -14  | -14  |
| Total              | -36  | -36  | -236 |

<sup>&</sup>lt;sup>1</sup> A positive number represents a net export from the Duke Progress West BAA.

<sup>&</sup>lt;sup>2</sup> The voltages shown represent the operating voltages on the high side terminals of the transformer.



A detailed listing of the changes in generation assumptions within the Duke Progress West BAA throughout the ten (10) year planning horizon, including the year(s) in which they occur, is provided in Table A4.3 below. Table A4.4 provides a listing of generation assumptions based upon long-term, firm point-to-point commitments. The capacity (MW) values shown for each year reflect summer peak conditions. Table A4.5 provides a listing of all generators modeled in the 2024 Version 3 Summer Peak power flow model.

Table A4.3: Changes in Generation Assumptions Based Upon LSEs - Duke Progress West BAA

| SITE                   | FUEL TYPE                              | 20          | 25 20                   | 26 2027     | 2028                     | 2029                     | 2030                   | 2031                    | 2032    | 2033    | 2034                  |
|------------------------|----------------------------------------|-------------|-------------------------|-------------|--------------------------|--------------------------|------------------------|-------------------------|---------|---------|-----------------------|
| None                   |                                        |             |                         |             |                          |                          |                        |                         |         |         |                       |
|                        |                                        |             |                         |             |                          |                          |                        |                         |         |         |                       |
|                        | A B                                    |             | 7.7                     | -           | D                        | D 4 . 4                  |                        |                         | . D     | *4*     |                       |
| Table A4.4: Generation | on Assumptions Based Up                | on Expected | d Long-t                | erm, Firm l | Point-to-                | Point Co                 | mmitmei                | nts – Du                | ke Prog | ress We | st BAA                |
| Table A4.4: Generation | on Assumptions Based Up<br><b>2025</b> | <u> </u>    | d Long-t<br><b>2027</b> | erm, Firm 1 | Point-to-<br><b>2029</b> | Point Coi<br><b>2030</b> | mmitmei<br><b>2031</b> | nts – Du<br><b>20</b> 3 |         | ress We | st BA2<br><b>2034</b> |

Table A4.5: Generating Units Modeled in the 2024 Version 3 Summer Peak Power flow Model – Duke Progress West BAA

| Summer Peak 2026 & 20 | 34 Regional SERT  | P V3 Models        |    | 20          | 26        | 20          | 34        |
|-----------------------|-------------------|--------------------|----|-------------|-----------|-------------|-----------|
| Plant                 | <b>Bus Number</b> | Bus Name           | Id | Fuel Type   | Pmax (MW) | Fuel Type   | Pmax (MW) |
| Asheville Plant       | 304858            | 1ASHVL #3CT 18.000 | 3  | Natural Gas | 160       | Natural Gas | 160       |
| Asheville Plant       | 304859            | 1ASHVL #4CT 18.000 | 4  | Natural Gas | 160       | Natural Gas | 160       |
| Asheville Plant       | 304875            | 1ASHVCC1CT5 18.000 | 5  | Natural Gas | 163       | Natural Gas | 163       |
| Asheville Plant       | 304876            | 1ASHVCC1ST6 13.800 | 6  | Natural Gas | 85        | Natural Gas | 85        |
| Asheville Plant       | 304877            | 1ASHVCC2CT7 18.000 | 7  | Natural Gas | 161       | Natural Gas | 161       |
| Asheville Plant       | 304878            | 1ASHVCC2ST8 13.800 | 8  | Natural Gas | 85        | Natural Gas | 85        |
| Marshall Hydro        | 304856            | 1MARSHAL 1&24.1600 | 1  | Hydro       | 2         | Hydro       | 2         |
| Marshall Hydro        | 304856            | 1MARSHAL 1&24.1600 | 2  | Hydro       | 2         | Hydro       | 2         |
| Walters Hydro         | 304853            | 1WALTERS #1 13.800 | 1  | Hydro       | 36        | Hydro       | 36        |
| Walters Hydro         | 304854            | 1WALTERS #2 13.800 | 1  | Hydro       | 40        | Hydro       | 40        |
| Walters Hydro         | 304855            | 1WALTERS #3 13.800 | 1  | Hydro       | 36        | Hydro       | 36        |
| Dist. Biogas          | 304759            | 3LEICESTER 115.00  | BG | Biogas      | 1.415     | Biogas      | 1.415     |
| Dist. Solar           | 304772            | 3BARNARDSVIL115.00 | HY | Hydro       | 1         | Hydro       | 1         |



| Summer Peak 2026 & 20 | 34 Regional SERT  | P V3 Models        |    | 20        | 026       | 20        | 2034      |  |
|-----------------------|-------------------|--------------------|----|-----------|-----------|-----------|-----------|--|
| Plant                 | <b>Bus Number</b> | <b>Bus Name</b>    | Id | Fuel Type | Pmax (MW) | Fuel Type | Pmax (MW) |  |
| Dist. Solar           | 304743            | 3CANTON115 T115.00 | PV | Solar     | 2.112     | Solar     | 2.112     |  |
| Dist. Solar           | 304759            | 3LEICESTER 115.00  | PV | Solar     | 4.823     | Solar     | 4.823     |  |
| Dist. Solar           | 304766            | 3ELK MOUNTAI115.00 | PV | Solar     | 5.957     | Solar     | 5.957     |  |
| Dist. Solar           | 304770            | 3BEAVERDAM 115.00  | PV | Solar     | 1.283     | Solar     | 1.283     |  |
| Dist. Solar           | 304771            | 3WEAVERVILLE115.00 | PV | Solar     | 1.255     | Solar     | 1.255     |  |
| Dist. Solar           | 304783            | 1MARSHALL 22.860   | PV | Solar     | 6.361     | Solar     | 6.361     |  |
| Dist. Solar           | 304790            | 3VANDERBLT T115.00 | PV | Solar     | 2.036     | Solar     | 2.036     |  |
| Dist. Solar           | 304791            | 3WESTASHEV T115.00 | PV | Solar     | 4.515     | Solar     | 4.515     |  |
| Dist. Solar           | 304804            | 3SKYLAND 115.00    | PV | Solar     | 1.221     | Solar     | 1.221     |  |
| Dist. Solar           | 304806            | 30TEEN SS T115.00  | PV | Solar     | 1.395     | Solar     | 1.395     |  |
| Dist. Solar           | 304818            | 3BALDWIN 115.00    | PV | Solar     | 1.917     | Solar     | 1.917     |  |
| Elk Mountain Battery  | 304766            | 3ELK MOUNTAI115.00 | ВТ | Battery   | 5         | Battery   | 5         |  |
| Elk Mountain Hydro    | 304766            | 3ELK MOUNTAI115.00 | HY | Hydro     | 2.5       | Hydro     | 2.5       |  |
| Rock Hill Battery     | 304805            | 3ASH ROCK HI115.00 | ВТ | Battery   | 8.8       | Battery   | 8.8       |  |



### X. Appendix 5: LG&E/KU BAA

The following information provides a more granular overview of the LG&E/KU BAA input assumptions and transmission expansion plan that are incorporated in the development of the SERTP regional transmission plan.

Table A5.1: 2024 SERTP Regional Transmission Plan – Transmission Project Snapshot by operating voltage (LG&E/KU BAA)

| LG&E/KU BAA                               | 100-120 | 121-150     | 151-199     | 200-299     | 300-399     | 400-550 |
|-------------------------------------------|---------|-------------|-------------|-------------|-------------|---------|
| EGGL/ NO DAA                              | kV      | kV          | kV          | kV          | kV          | kV      |
| Transmission lines – New                  |         |             |             |             |             |         |
| (Circuit Mi.)                             |         | <del></del> | <del></del> | <del></del> | <del></del> |         |
| Transmission Lines – Uprates <sup>1</sup> |         | 30.17       | 22.00       |             |             |         |
| (Circuit Mi.)                             |         | 30.17       | 22.00       | <del></del> | <del></del> |         |
| Transformers <sup>2</sup> – New           |         |             |             |             |             |         |
| Transformers <sup>2</sup> – Replacements  |         |             |             |             |             |         |

<sup>1</sup> A transmission line uprate may be the result of reconductoring and/or increasing the operating temperature/voltage along the transmission line.

Table A5.2: Interface commitments<sup>1</sup> modeled in the SERTP Summer Peak models – LG&E/KU BAA

| То                  | 2026   | 2029  | 2034   |
|---------------------|--------|-------|--------|
| PJM                 | 729.8  | 729.8 | 729.8  |
| OVEC                | -179   | -179  | -179   |
| MISO                | -247.8 | -249  | -250.2 |
| Owensboro Municipal | 0      | 0     | 0      |
| TVA                 | -3     | -3    | -3     |
| Total               | 300    | 298.8 | 297.6  |

<sup>&</sup>lt;sup>1</sup> A positive number represents a net export from the LG&E/KU BAA.

<sup>&</sup>lt;sup>2</sup> The voltages shown represent the operating voltages on the high side terminals of the transformer.



A detailed listing of the changes in generation assumptions within the LG&E/KU BAA throughout the ten (10) year planning horizon, including the year(s) in which they occur, is provided in Table A5.3 below. Furthermore, supplemental information regarding noteworthy generation expansion and retirements/decertifications included in the 2024 series set of SERTP power flow models is provided below while Table A5.4 provides a listing of generation assumptions based upon long-term, firm point-to-point commitments. The capacity (MW) values shown for each year reflect summer peak conditions. Table A5.5 provides a listing of all generators modeled in the 2024 Version 3 Summer Peak power flow model.

Table A5.3: Changes in Generation Assumptions Based Upon LSEs - LG&E/KU BAA

| SITE        | FUEL TYPE | 2025 | 2026 | 2027 | 2028 | 2029 | 2030 | 2031 | 2032 | 2033 | 2034 |
|-------------|-----------|------|------|------|------|------|------|------|------|------|------|
| GI-2021-007 | Solar     | 0    | 120  | 120  | 120  | 120  | 120  | 120  | 120  | 120  | 120  |

Table A5.4: Generation Assumptions Based Upon Expected Long-term, Firm Point-to-Point Commitments – LG&E/KU BAA

| SITE           | 2025 | 2026 | 2027 | 2028 | 2029 | 2030 | 2031 | 2032 | 2033 | 2034 |
|----------------|------|------|------|------|------|------|------|------|------|------|
| TRIMBLE COUNTY | 324  | 324  | 324  | 324  | 324  | 324  | 324  | 324  | 324  | 324  |

Table A5.5: Generating Units Modeled in the 2024 Version 3 Summer Peak Power flow Model - LG&E/KU BAA

| Summer Peak 2026 | & 2034 Regional SERT | P V3 Models       |    | 20        | 026       | 20        | 034       |
|------------------|----------------------|-------------------|----|-----------|-----------|-----------|-----------|
| Plant            | <b>Bus Number</b>    | Bus Name          | Id | Fuel Type | Pmax (MW) | Fuel Type | Pmax (MW) |
| Brown            | 324002               | 1BROWN 3 24.000   | 3  | Coal      | 455       | Coal      | 455       |
| Brown            | 324003               | 1BROWN 5 13.800   | 5  | Gas       | 131       | Gas       | 131       |
| Brown            | 324004               | 1BROWN 6 18.000   | 6  | Gas       | 147       | Gas       | 147       |
| Brown            | 324005               | 1BROWN 7 18.000   | 7  | Gas       | 147       | Gas       | 147       |
| Brown            | 324006               | 1BROWN 8 13.800   | 8  | Gas       | 122       | Gas       | 122       |
| Brown            | 324007               | 1BROWN 9 13.800   | 9  | Gas       | 122       | Gas       | 122       |
| Brown            | 324008               | 1BROWN 10 13.800  | 10 | Gas       | 122       | Gas       | 122       |
| Brown            | 324009               | 1BROWN 11 13.800  | 11 | Gas       | 122       | Gas       | 122       |
| Dix Dam          | 324014               | 1DIX DAM 1 13.200 | 1  | Hydro     | 11.2      | Hydro     | 11.2      |
| Dix Dam          | 324015               | 1DIX DAM 2 13.200 | 2  | Hydro     | 11.2      | Hydro     | 11.2      |

| Summer Peak 2026 8 | & 2034 Regional SERT | P V3 Models        |    | 20        | 026       | 20        | )34       |
|--------------------|----------------------|--------------------|----|-----------|-----------|-----------|-----------|
| Plant              | <b>Bus Number</b>    | Bus Name           | Id | Fuel Type | Pmax (MW) | Fuel Type | Pmax (MW) |
| Dix Dam            | 324016               | 1DIX DAM 3 13.200  | 3  | Hydro     | 11.2      | Hydro     | 11.2      |
| Ghent              | 324017               | 1GHENT 1 18.000    | 1  | Coal      | 520       | Coal      | 520       |
| Ghent              | 324018               | 1GHENT 2 22.000    | 2  | Coal      | 520       | Coal      | 520       |
| Ghent              | 324019               | 1GHENT 3 22.000    | 3  | Coal      | 530       | Coal      | 530       |
| Ghent              | 324020               | 1GHENT 4 22.000    | 4  | Coal      | 525       | Coal      | 525       |
| Haefling           | 324023               | 1HAEFLING 13.800   | 1  | Gas       | 12        | Gas       | 12        |
| Haefling           | 324023               | 1HAEFLING 13.800   | 2  | Gas       | 12        | Gas       | 12        |
| Mill Creek         | 324024               | 1MILL CRK 1 22.000 | 1  | Coal      | 330       | Coal      | 330       |
| Mill Creek         | 324025               | 1MILL CRK 2 22.000 | 2  | Coal      | 330       | Coal      | 330       |
| Mill Creek         | 324026               | 1MILL CRK 3 22.000 | 3  | Coal      | 422       | Coal      | 422       |
| Mill Creek         | 324027               | 1MILL CRK 4 22.000 | 4  | Coal      | 517       | Coal      | 517       |
| Paddys Run         | 324031               | 1PADDY RN 1316.000 | 13 | Gas       | 148       | Gas       | 148       |
| Trimble County     | 324034               | 1TRIM CO 1 22.000  | 1  | Coal      | 530       | Coal      | 530       |
| Trimble County     | 324035               | 1TRIM CO 2 24.000  | 2  | Coal      | 781       | Coal      | 781       |
| Trimble County     | 324036               | 1TRIM CO 5 18.000  | 5  | Gas       | 160       | Gas       | 160       |
| Trimble County     | 324037               | 1TRIM CO 6 18.000  | 6  | Gas       | 160       | Gas       | 160       |
| Trimble County     | 324038               | 1TRIM CO 7 18.000  | 7  | Gas       | 160       | Gas       | 160       |
| Trimble County     | 324039               | 1TRIM CO 8 18.000  | 8  | Gas       | 160       | Gas       | 160       |
| Trimble County     | 324040               | 1TRIM CO 9 18.000  | 9  | Gas       | 160       | Gas       | 160       |
| Trimble County     | 324041               | 1TRIM CO 10 18.000 | 10 | Gas       | 160       | Gas       | 160       |
| Buckner            | 324044               | 1BLUEGRASS 118.000 | 1  | Gas       | 166       | Gas       | 166       |
| Buckner            | 324045               | 1BLUEGRASS 218.000 | 2  | Gas       | 166       | Gas       | 166       |
| Buckner            | 324046               | 1BLUEGRASS 318.000 | 3  | Gas       | 166       | Gas       | 166       |
| Lock               | 324052               | 1LOCK 7 2.4000     | 1  | Hydro     | 2         | Hydro     | 2         |
| Ohio Falls         | 324234               | 10HIO FALL 114.000 | 1  | Hydro     | 9.375     | Hydro     | 9.375     |
| Ohio Falls         | 324234               | 10HIO FALL 114.000 | 2  | Hydro     | 9.375     | Hydro     | 9.375     |
| Ohio Falls         | 324234               | 10HIO FALL 114.000 | 3  | Hydro     | 9.375     | Hydro     | 9.375     |
| Ohio Falls         | 324234               | 10HIO FALL 114.000 | 4  | Hydro     | 9.375     | Hydro     | 9.375     |
| Ohio Falls         | 324235               | 10HIO FALL 214.000 | 5  | Hydro     | 9.375     | Hydro     | 9.375     |
| Ohio Falls         | 324235               | 10HIO FALL 214.000 | 6  | Hydro     | 9.375     | Hydro     | 9.375     |



| Summer Peak 2026 | & 2034 Regional SERT | P V3 Models        |            | 20        | 026       | 20        | 034       |
|------------------|----------------------|--------------------|------------|-----------|-----------|-----------|-----------|
| Plant            | <b>Bus Number</b>    | Bus Name           | Id         | Fuel Type | Pmax (MW) | Fuel Type | Pmax (MW) |
| Ohio Falls       | 324235               | 10HIO FALL 214.000 | 7          | Hydro     | 9.375     | Hydro     | 9.375     |
| Ohio Falls       | 324235               | 10HIO FALL 214.000 | 8          | Hydro     | 9.375     | Hydro     | 9.375     |
| Paris            | 324677               | 2PARIS 12 69.000   | 1          | Gas       | 11.27     | Gas       | 11.27     |
| Paducah          | 324697               | 1KMPA PAD2 13.800  | 2          | Gas       | 54        | Gas       | 54        |
| Paducah          | 324933               | 1KMPA PAD1 13.800  | 1          | Gas       | 54        | Gas       | 54        |
| Brown            | 325012               | 1BROWN SOLAR13.200 | <b>S1</b>  | Solar     | 8         | Solar     | 8         |
| GI2017-002       | 325029               | 1G2017-002G10.6900 | 1          | Solar     | 57.3      | Solar     | 57.3      |
| GI2017-002       | 325030               | 1G2017-002G20.6300 | 1          | Solar     | 13.3      | Solar     | 13.3      |
| GI2019-002       | 325067               | 1GI2019-002G0.6000 | 1          | Solar     | 0         | Solar     | 105.5     |
| G2019-004        | 325090               | 1G2019-004GS0.6450 | 1          | Solar     | 200       | Solar     | 200       |
| Cane Run         | 325093               | 1CANERUN7CT118.000 | 71         | Gas       | 219       | Gas       | 219       |
| Cane Run         | 325094               | 1CANERUN7CT218.000 | 72         | Gas       | 219       | Gas       | 219       |
| Cane Run         | 325095               | 1CANERUN7ST 18.000 | <b>7</b> S | Gas       | 237       | Gas       | 237       |
| GI2019-001       | 325120               | 1GI2019-001G0.6450 | 1          | Gas       | 122.17    | Gas       | 122.17    |
| GI2019-008       | 325125               | 1GI2019-008G0.6000 | 1          | Gas       | 101.1     | Gas       | 101.1     |
| GI2019-029       | 325130               | 1GI2019-029G0.6000 | 1          | Gas       | 80        | Gas       | 80        |
| GI2019-003       | 325131               | 1GI2019-003G0.6000 | 1          | Gas       | 100       | Gas       | 100       |
| GI2021-007       | 325143               | 1GI2021-007G0.6000 | 1          | Gas       | 102       | Gas       | 102       |
| GI2020-001       | 325180               | 1GI2020-001G0.6000 | 1          | Gas       | 54        | Gas       | 54        |
| GI2019-025       | 325185               | 1GI2019-025G0.6000 | 1          | Gas       | 100       | Gas       | 100       |
| Paddys Run       | 326515               | 1PADDY RN 1214.000 | 12         | Gas       | 23        | Gas       | 23        |
| EKPC Office      | 326541               | 2EKPC OFFICE69.000 | P1         | Gas       | 8.5       | Gas       | 8.5       |



## XI. Appendix 6: Southern BAA

The following information provides a more granular overview of the Southern BAA input assumptions and transmission expansion plan that are incorporated in the development of the SERTP regional transmission plan.

Table A6.1: 2024 SERTP Regional Transmission Plan – Transmission Project Snapshot by operating voltage (Southern BAA)

| Southern BAA                                            | 100-120<br>kV | 121-150<br>kV | 151-199<br>kV | 200-299<br>kV | 300-399<br>kV | 400-550<br>kV |
|---------------------------------------------------------|---------------|---------------|---------------|---------------|---------------|---------------|
| Transmission lines – New (Circuit Mi.)                  | 122.6         | 0.0           | 0.0           | 720.2         | 0.0           | 542.8         |
| Transmission Lines – Uprates <sup>1</sup> (Circuit Mi.) | 1037.1        | 0.0           | 0.0           | 366.9         | 0.0           | 0.0           |
| Transformers <sup>2</sup> – New                         | 0             | 0             | 0             | 10            | 0             | 14            |
| Transformers <sup>2</sup> – Replacements                | 0             | 0             | 0             | 2             | 0             | 0             |
| Power Flow Control Devices                              | 0             | 0             | 0             | 2             | 0             | 0             |
| Static Compensators                                     | 0             | 0             | 0             | 2             | 0             | 0             |

<sup>&</sup>lt;sup>1</sup> A transmission line uprate may be the result of reconductoring and/or increasing the operating temperature/voltage along the transmission line.

Table A6.2: Interface commitments<sup>1</sup> modeled in the SERTP Summer Peak models – Southern BAA

| То             | 2026 | 2029 | 2034 |
|----------------|------|------|------|
| Duke Carolinas | 0    | 0    | 0    |
| DESC           | 0    | 0    | 0    |
| SCPSA          | 200  | 717  | 717  |
| TVA            | -43  | -41  | -40  |
| SEPA           | -625 | -625 | -625 |
| MISO           | -179 | -231 | -330 |
| FRCC           | 475  | 380  | 177  |

<sup>&</sup>lt;sup>1</sup> A positive number represents a net export from the Southern BAA.

<sup>&</sup>lt;sup>2</sup> The voltages shown represent the operating voltages on the high side terminals of the transformer.



A detailed listing of the changes in generation assumptions within the Southern BAA throughout the ten (10) year planning horizon, including the year(s) in which they occur, is provided in Tables A7.3 through A7.6 below. Furthermore, supplemental information regarding noteworthy generation expansion and retirements/decertifications included in the 2024 series set of SERTP power flow models is provided below, while Table A7.7 provides a listing of generation assumptions based upon long-term, firm point-to-point commitments. The capacity (MW) values shown for each year reflect summer peak conditions. Table A7.8 provides a listing of all generators modeled in the 2024 Version 3 Summer Peak power flow model.

Table A6.3: Changes in Generation Assumptions Based Upon LSEs – Southern Company

| SITE                         | FUEL TYPE | 2025 | 2026 | 2027 | 2028 | 2029 | 2030 | 2031 | 2032 | 2033 | 2034 |
|------------------------------|-----------|------|------|------|------|------|------|------|------|------|------|
| YATES 8, 9 & 10              | GAS       |      |      | 1224 | 1224 | 1224 | 1224 | 1224 | 1224 | 1224 | 1224 |
| LINDSAY HILL <sup>1</sup>    | GAS       |      |      |      |      | 850  | 850  | 850  | 850  | 850  | 850  |
| EAST ATMORE SOLAR            | SOLAR     | 80   | 80   | 80   | 80   | 80   | 80   | 80   | 80   | 80   | 80   |
| FOLEY SOLAR                  | SOLAR     | 80   | 80   | 80   | 80   | 80   | 80   | 80   | 80   | 80   | 80   |
| NOTCH 4&5                    | SOLAR     |      | 160  | 160  | 160  | 160  | 160  | 160  | 160  | 160  | 160  |
| SATURN SOLAR 1&2             | SOLAR     |      |      | 160  | 160  | 160  | 160  | 160  | 160  | 160  | 160  |
| SR METTER                    | SOLAR     |      | 80   | 80   | 80   | 80   | 80   | 80   | 80   | 80   | 80   |
| WALKER SPRINGS I&II<br>SOLAR | SOLAR     | 160  | 160  | 160  | 160  | 160  | 160  | 160  | 160  | 160  | 160  |
| SANDERSVILLE SOLAR           | SOLAR     |      |      |      | 50   | 50   | 50   | 50   | 50   | 50   | 50   |
| DRAWHORN SOLAR               | SOLAR     |      |      |      | 80   | 80   | 80   | 80   | 80   | 80   | 80   |
| CLEARVIEW SOLAR              | SOLAR     |      |      |      | 200  | 200  | 200  | 200  | 200  | 200  | 200  |
| OAKMAN SOLAR 1&2             | SOLAR     |      |      |      |      | 160  | 160  | 160  | 160  | 160  | 160  |
| STEAMROLLER SOLAR            | SOLAR     |      |      |      |      | 150  | 150  | 150  | 150  | 150  | 150  |
| SHUBUTA SOLAR                | SOLAR     |      |      |      |      | 156  | 156  | 156  | 156  | 156  | 156  |
| GOODSPRINGS BESS             | BESS      |      |      |      | 150  | 150  | 150  | 150  | 150  | 150  | 150  |
| HAMMOND BESS                 | BESS      |      |      | 57.5 | 57.5 | 57.5 | 57.5 | 57.5 | 57.5 | 57.5 | 57.5 |
| MCGRAU FORD BESS             | BESS      |      | 265  | 530  | 530  | 530  | 530  | 530  | 530  | 530  | 530  |

 $<sup>^{\,1}\,</sup>$  Third-party delivery service ending, transitioning generation to a Designated Network Resource.

| Table A6.4: | Chanaes in | Generation. | <b>Assumptions</b> | Based U | lpon LSEs – C | iTC |
|-------------|------------|-------------|--------------------|---------|---------------|-----|
|             |            |             |                    |         |               |     |

| SITE            | FUEL TYPE | 2025 | 2026 | 2027 | 2028 | 2029 | 2030 | 2031 | 2032 | 2033 | 2034 |
|-----------------|-----------|------|------|------|------|------|------|------|------|------|------|
| SR BACON        | SOLAR     |      | 100  | 200  | 300  | 300  | 300  | 300  | 300  | 300  | 300  |
| SR ROBBINS      | SOLAR     |      |      | 175  | 250  | 250  | 250  | 250  | 250  | 250  | 250  |
| SR ROCHELLE     | SOLAR     |      |      | 90   | 140  | 140  | 140  | 140  | 140  | 140  | 140  |
| SR Toombs       | SOLAR     | 250  | 250  | 250  | 250  | 250  | 250  | 250  | 250  | 250  | 250  |
| Big Smarr 1 & 2 | Gas       |      |      |      |      |      | 1200 | 1200 | 1200 | 1200 | 1200 |
| Talbot 7        | Gas       |      |      |      |      | 250  | 250  | 250  | 250  | 250  | 250  |

Table A6.5: Changes in Generation Assumptions Based Upon LSEs – MEAG

| SITE | FUEL TYPE | 2025 | 2026 | 2027 | 2028 | 2029 | 2030 | 2031 | 2032 | 2033 | 2034 |
|------|-----------|------|------|------|------|------|------|------|------|------|------|
|      |           |      | None |      |      |      |      |      |      |      |      |

Table A6.6: Changes in Generation Assumptions Based Upon LSEs – Dalton

| SITE | FUEL TYPE | 2025 | 2026 | 2027 | 2028 | 2029 | 2030 | 2031 | 2032 | 2033 | 2034 |
|------|-----------|------|------|------|------|------|------|------|------|------|------|
|      |           |      | None |      |      |      |      |      |      |      |      |

Table A6.7: Changes in Generation Assumptions Based Upon LSEs - PowerSouth

| SITE               | FUEL TYPE | 2025 | 2026 | 2027 | 2028 | 2029 | 2030 | 2031 | 2032 | 2033 | 2034 |
|--------------------|-----------|------|------|------|------|------|------|------|------|------|------|
| Fountain           | Solar     | 75   | 75   | 75   | 75   | 75   | 75   | 75   | 75   | 75   | 75   |
| Walker Springs III | Solar     |      | 80   | 80   | 80   | 80   | 80   | 80   | 80   | 80   | 80   |

Table A6.8: Generation Assumptions Based Upon Expected Long-term, Firm Point-to-Point Commitments – Southern Company

| SITE                      | 2025 | 2026 | 2027 | 2028 | 2029 | 2030 | 2031 | 2032 | 2033 | 2034 |
|---------------------------|------|------|------|------|------|------|------|------|------|------|
| DAHLBERG                  | 44   | 44   | 44   | 44   | 44   | 44   | 44   | 44   | 44   | 44   |
| Daniel                    | 100  | 100  | 100  | 100  | 100  | 100  | 100  | 100  | 100  | 100  |
| Harris                    | 71   | 71   | 71   | 71   | 71   | 71   | 71   | 71   | 71   | 71   |
| HILLABEE                  | 210  | 210  | 210  | 210  | 210  | 210  | 210  | 210  | 210  | 210  |
| Lindsay Hill <sup>1</sup> | 220  | 220  | 220  | 220  | 0    |      |      |      |      |      |



| SITE                | 2025 | 2026 | 2027 | 2028 | 2029 | 2030 | 2031 | 2032 | 2033 | 2034 |
|---------------------|------|------|------|------|------|------|------|------|------|------|
| Miller <sup>2</sup> | 1400 | 1500 | 1233 | 1500 | 1500 | 1500 | 1500 | 1500 | 1500 | 1500 |
| Sandersville        |      |      | 267  |      | 292  | 292  | 292  | 292  | 292  | 292  |
| Scherer             | 210  | 210  | 210  | 210  | 0    |      |      |      |      |      |
| Vogtle              | 206  | 206  | 206  | 206  | 206  | 206  | 206  | 206  | 206  | 206  |

<sup>&</sup>lt;sup>1</sup> Third-party delivery service ending, transitioning generation to a Designated Network Resource.

Table A6.9: Generating Units Modeled in the 2024 Version 3 Summer Peak Power flow Model – Southern BAA

| Summer Peak 2026 & 2034 | Regional SERTP V3 M | odels              |           | 202       | 26           | 203       | 34           |
|-------------------------|---------------------|--------------------|-----------|-----------|--------------|-----------|--------------|
| Plant                   | Bus Number          | Bus Name           | Id        | Fuel Type | Pmax<br>(MW) | Fuel Type | Pmax<br>(MW) |
| Addison                 | 383901              | ADDISON 1 18.000   | 1         | Gas       | 148.5        | Gas       | 148.5        |
| Addison                 | 383902              | ADDISON 2 18.000   | 2         | Gas       | 149          | Gas       | 0            |
| Addison                 | 383903              | ADDISON 3 18.000   | 3         | Gas       | 148.5        | Gas       | 148.5        |
| Addison                 | 383904              | ADDISON 4 18.000   | 4         | Gas       | 145.9        | Gas       | 145.9        |
| Albany Green Energy     | 383480              | ALB GRN NRG 13.800 | 1         | Biomass   | 49.5         | Biomass   | 49.5         |
| Allatoona Dam           | 383506              | ALLA DAM 13.800    | 1         | Hydro     | 72           | Hydro     | 72           |
| Alligator Solar         | 383313              | ALIGATOR PV 34.500 | S1        | Solar     | 80           | Solar     | 80           |
| AMEA Sylacauga          | 386036              | AMEA CT1 13.800    | 1         | Gas       | 47.5         | Gas       | 47.5         |
| AMEA Sylacauga          | 386037              | AMEA CT2 13.800    | 2         | Gas       | 47.5         | Gas       | 47.5         |
| Americus Battery        | 383460              | AMER BESS 34.500   | B1        | Battery   | 0            | Battery   | 0            |
| Americus Solar          | 383461              | AMERICUS 1 34.500  | <b>S1</b> | Solar     | 0            | Solar     | 0            |
| Americus Solar          | 383462              | AMERICUS 2 34.500  | <b>S2</b> | Solar     | 0            | Solar     | 0            |
| Americus Solar          | 383463              | AMERICUS 3 34.500  | <b>S3</b> | Solar     | 0            | Solar     | 0            |
| Anniston Army Solar     | 386035              | ANAD SLR 115.00    | <b>S1</b> | Solar     | 11           | Solar     | 11           |
| Arlington Solar         | 383434              | SR ARLINGTN 34.500 | <b>S1</b> | Solar     | 123          | Solar     | 123          |
| Bankhead Dam            | 384357              | BANK GEN 13.800    | 1         | Hydro     | 52           | Hydro     | 52           |
| Barry                   | 386471              | BARRY 1 18.000     | 1         | Gas       | 80           | Gas       | 80           |
| Barry                   | 386472              | BARRY 2 18.000     | 2         | Gas       | 80           | Gas       | 80           |
| Barry                   | 386474              | BARRY 4 22.000     | 4         | Gas       | 368          | Gas       | 368          |

<sup>&</sup>lt;sup>2</sup> Third-party delivery service, sourcing from a Designated Network Resource, will likely require a redirect to new source.

| Summer Peak 2026 & 2034 Re                 | gional SERTP V3 M | odels              |    | 202       | 26           | 203       | 34           |
|--------------------------------------------|-------------------|--------------------|----|-----------|--------------|-----------|--------------|
| Plant                                      | <b>Bus Number</b> | Bus Name           | Id | Fuel Type | Pmax<br>(MW) | Fuel Type | Pmax<br>(MW) |
| Barry                                      | 386475            | BARRY 5 26.000     | 5  | Coal      | 785          | Coal      | 785          |
| Barry                                      | 386476            | BARRY 6ST 18.000   | 6  | Gas       | 206.6        | Gas       | 206.6        |
| Barry                                      | 386477            | BARRY 6A 18.000    | 6A | Gas       | 185.6        | Gas       | 185.6        |
| Barry                                      | 386478            | BARRY 6B 18.000    | 6B | Gas       | 186          | Gas       | 186          |
| Barry                                      | 386479            | BARRY 7ST 18.000   | 7  | Gas       | 204.7        | Gas       | 204.7        |
| Barry                                      | 386480            | BARRY 7A 18.000    | 7A | Gas       | 183.6        | Gas       | 183.6        |
| Barry                                      | 386481            | BARRY 7B 18.000    | 7B | Gas       | 187.9        | Gas       | 187.9        |
| Barry                                      | 386482            | BARRY 8ST 21.000   | 8  | Gas       | 287.7        | Gas       | 302.1        |
| Barry                                      | 386483            | BARRY 8A 19.000    | 8A | Gas       | 399          | Gas       | 382.94       |
| Bartletts Ferry Dam                        | 383514            | BARTLFY1 12.000    | 1  | Hydro     | 15.2         | Hydro     | 15.2         |
| Bartletts Ferry Dam                        | 383515            | BARTLFY2 12.000    | 2  | Hydro     | 15.2         | Hydro     | 15.2         |
| Bartletts Ferry Dam                        | 383516            | BARTLFY3 12.000    | 3  | Hydro     | 15.2         | Hydro     | 15.2         |
| Bartletts Ferry Dam                        | 383517            | BARTLFY4 6.9000    | 4  | Hydro     | 20.2         | Hydro     | 20.2         |
| Bartletts Ferry Dam                        | 383518            | BARTLFY6 13.800    | 5  | Hydro     | 54.4         | Hydro     | 54.4         |
| Bartletts Ferry Dam                        | 383518            | BARTLFY6 13.800    | 6  | Hydro     | 54.4         | Hydro     | 54.4         |
| Big Smarr                                  | 383723            | SMARR 1ST 18.000   | 1  | Gas       | 0            | Gas       | 196.9        |
| Big Smarr                                  | 383724            | SMARR 1A 18.000    | 1A | Gas       | 0            | Gas       | 403.1        |
| Big Smarr                                  | 383726            | SMARR 2ST 18.000   | 2  | Gas       | 0            | Gas       | 196.9        |
| Big Smarr                                  | 383727            | SMARR 2A 18.000    | 2A | Gas       | 0            | Gas       | 403.1        |
| Bird Dog Solar                             | 383455            | BIRD DOG PV 34.500 | S1 | Solar     | 40           | Solar     | 40           |
| Black Bear Solar                           | 386031            | BLK BR SLR 34.500  | S1 | Solar     | 100          | Solar     | 100          |
| Black Prairie Solar & Storage <sup>1</sup> | 386013            | BLKPRAIRSLR 34.500 | S  | Solar     | 0            | Solar     | 0            |
| Black Prairie Solar & Storage <sup>1</sup> | 386013            | BLKPRAIRSLR 34.500 | B1 | Battery   | 0            | Battery   | 0            |
| Blackwater Solar                           | 383466            | BLCKWTR SLR 34.500 | S1 | Solar     | 80           | Solar     | 80           |
| Bouldin Dam                                | 386581            | BOULD1GN 13.800    | 1  | Hydro     | 75.7         | Hydro     | 75.7         |
| Bouldin Dam                                | 386582            | BOULD2GN 13.800    | 2  | Hydro     | 75.3         | Hydro     | 75.3         |
| Bouldin Dam                                | 386583            | BOULD3GN 13.800    | 3  | Hydro     | 75.3         | Hydro     | 75.3         |

| Summer Peak 2026 & 2034      | 4 Regional SERTP V3 M | odels              |    | 20              | 26           | 203             | 34           |
|------------------------------|-----------------------|--------------------|----|-----------------|--------------|-----------------|--------------|
| Plant                        | <b>Bus Number</b>     | Bus Name           | Id | Fuel Type       | Pmax<br>(MW) | Fuel Type       | Pmax<br>(MW) |
| Bowen                        | 383841                | BOWEN 1 25.000     | 1  | Coal            | 718          | Coal            | 718          |
| Bowen                        | 383842                | BOWEN 2 25.000     | 2  | Coal            | 722          | Coal            | 722          |
| Bowen                        | 383843                | BOWEN 3 18.000     | 3  | Coal            | 888.5        | Coal            | 888.5        |
| Bowen                        | 383844                | BOWEN 4 18.000     | 4  | Coal            | 890.5        | Coal            | 890.5        |
| Brenneman Solar <sup>1</sup> | 383330                | BRNEMEN SLR 34.500 | S1 | Solar           | 0            | Solar           | 0            |
| Buford Dam 1                 | 383509                | BUF DAM 1+3 13.800 | 1  | Hydro           | 60.1         | Hydro           | 60.1         |
| Buford Dam 2                 | 383510                | BUF DAM 2 13.800   | 2  | Hydro           | 60.1         | Hydro           | 60.1         |
| Buford Dam 3                 | 383509                | BUF DAM 1+3 13.800 | 3  | Hydro           | 6.8          | Hydro           | 6.8          |
| Bulldog Solar                | 383456                | BULLDOG PV 34.500  | S1 | Solar           | 80           | Solar           | 80           |
| Bulter Solar                 | 383406                | BUTLER SLR 34.500  | S1 | Solar           | 100          | Solar           | 100          |
| Calhoun                      | 383680                | CALHOUN GEN 13.800 | 4  | Gas             | 20           | Gas             | 20           |
| Calhoun                      | 386061                | CALHOUNCT1 18.000  | 1  | Gas             | 161.4        | Gas             | 161.4        |
| Calhoun                      | 386062                | CALHOUNCT2 18.000  | 2  | Gas             | 161.4        | Gas             | 161.4        |
| Calhoun                      | 386063                | CALHOUNCT3 18.000  | 3  | Gas             | 161.4        | Gas             | 161.4        |
| Calhoun                      | 386064                | CALHOUNCT4 18.000  | 4  | Gas             | 161.4        | Gas             | 161.4        |
| Camilla Solar                | 383425                | CAMILLA SLR 230.00 | S1 | Solar           | 16           | Solar           | 16           |
| Cane Creek Solar             | 386842                | CANE CK SL 34.500  | S1 | Solar           | 78.5         | Solar           | 78.5         |
| Carters Dam                  | 383502                | CARTERSDAM1 13.800 | 1  | Hydro           | 148          | Hydro           | 148          |
| Carters Dam                  | 383503                | CARTERSDAM2 13.800 | 2  | Hydro           | 148          | Hydro           | 148          |
| Carters Dam                  | 383504                | CARTERSDAM3 13.800 | 3  | Pumped<br>Hydro | 148          | Pumped<br>Hydro | 148          |
| Carters Dam                  | 383505                | CARTERSDAM4 13.800 | 4  | Pumped<br>Hydro | 148          | Pumped<br>Hydro | 148          |
| Cedar Springs Solar          | 383474                | SR CEDAR SP 34.500 | S1 | Solar           | 70           | Solar           | 70           |
| Central Alabama              | 386427                | CENTAL 2ST 22.000  | 2  | Gas             | 404          | Gas             | 404          |
| Central Alabama              | 386428                | CENTAL 2A 18.000   | 2A | Gas             | 182.33       | Gas             | 182.33       |
| Central Alabama              | 386429                | CENTAL 2B 18.000   | 2B | Gas             | 182.33       | Gas             | 182.33       |
| Central Alabama              | 386430                | CENTAL 2C 18.000   | 2C | Gas             | 182.34       | Gas             | 182.34       |

| Summer Peak 2026 & 2034        | Regional SERTP V3 M | odels              |           | 202       | 26           | 203       | 34           |
|--------------------------------|---------------------|--------------------|-----------|-----------|--------------|-----------|--------------|
| Plant                          | <b>Bus Number</b>   | Bus Name           | Id        | Fuel Type | Pmax<br>(MW) | Fuel Type | Pmax<br>(MW) |
| Chattahoochee Energy           | 383632              | CHAT EN 1ST 16.000 | 1         | Gas       | 164.5        | Gas       | 164.5        |
| Chattahoochee Energy           | 383633              | CHAT EN 1A 16.000  | 1A        | Gas       | 160          | Gas       | 160          |
| Chattahoochee Energy           | 383634              | CHAT EN 1B 16.000  | 1B        | Gas       | 160          | Gas       | 160          |
| Chevron                        | 386831              | CHEVRON1 13.200    | 1         | Gas       | 15           | Gas       | 15           |
| Chevron                        | 386832              | CHEVRON2 13.200    | 2         | Gas       | 15           | Gas       | 15           |
| Chevron                        | 386833              | CHEVRON3 13.200    | 3         | Gas       | 16           | Gas       | 16           |
| Chevron                        | 386834              | CHEVRON4 13.200    | 4         | Gas       | 16           | Gas       | 16           |
| Chevron                        | 386835              | CHEVRON5 13.800    | 5         | Gas       | 70           | Gas       | 70           |
| Clay Solar                     | 383438              | SR CLAY 34.500     | S1        | Solar     | 106          | Solar     | 106          |
| Clearview Solar                | 386006              | CLEARVW SLR 34.500 | <b>S1</b> | Solar     | 0            | Solar     | 200          |
| Cool Springs Solar             | 383452              | COOL SPR PV 34.500 | S1        | Solar     | 213          | Solar     | 213          |
| Crisp Co. Dam                  | 383541              | CRISPCO1 6.6000    | 1         | Hydro     | 20           | Hydro     | 20           |
| Dahlberg                       | 383661              | DAHLBERG 1 13.800  | 1         | Gas       | 74.8         | Gas       | 74.8         |
| Dahlberg                       | 383662              | DAHLBERG 2 13.800  | 2         | Gas       | 74           | Gas       | 74           |
| Dahlberg                       | 383663              | DAHLBERG 3 13.800  | 3         | Gas       | 74.7         | Gas       | 74.7         |
| Dahlberg                       | 383664              | DAHLBERG 4 13.800  | 4         | Gas       | 73.5         | Gas       | 73.5         |
| Dahlberg                       | 383665              | DAHLBERG 5 13.800  | 5         | Gas       | 74.7         | Gas       | 74.7         |
| Dahlberg                       | 383666              | DAHLBERG 6 13.800  | 6         | Gas       | 74.9         | Gas       | 74.9         |
| Dahlberg                       | 383667              | DAHLBERG 7 13.800  | 7         | Gas       | 75           | Gas       | 75           |
| Dahlberg                       | 383668              | DAHLBERG 8 13.800  | 8         | Gas       | 74           | Gas       | 74           |
| Dahlberg                       | 383669              | DAHLBERG 9 13.800  | 9         | Gas       | 74.8         | Gas       | 74.8         |
| Dahlberg                       | 383670              | DAHLBERG 10 13.800 | 10        | Gas       | 75.2         | Gas       | 75.2         |
| Dale County Solar <sup>1</sup> | 386029              | DALE CTY SL 34.500 | S1        | Solar     | 0            | Solar     | 0            |
| Daniel                         | 386872              | DANIEL 2 18.000    | 2         | Coal      | 410          | Coal      | 410          |
| Daniel                         | 386873              | DANIEL 3ST 18.000  | 3         | Gas       | 198          | Gas       | 198          |
| Daniel                         | 386874              | DANIEL 3A 18.000   | 3A        | Gas       | 190.2        | Gas       | 190.2        |
| Daniel                         | 386875              | DANIEL 3B 18.000   | 3B        | Gas       | 190.2        | Gas       | 190.2        |

| Summer Peak 2026 & 2034 R | Regional SERTP V3 M | odels              |           | 202       | 26           | 203       | 34           |
|---------------------------|---------------------|--------------------|-----------|-----------|--------------|-----------|--------------|
| Plant                     | <b>Bus Number</b>   | Bus Name           | Id        | Fuel Type | Pmax<br>(MW) | Fuel Type | Pmax<br>(MW) |
| Daniel                    | 386876              | DANIEL 4ST 18.000  | 4         | Gas       | 204.6        | Gas       | 204.6        |
| Daniel                    | 386877              | DANIEL 4A 18.000   | 4A        | Gas       | 198.4        | Gas       | 198.4        |
| Daniel                    | 386878              | DANIEL 4B 18.000   | 4B        | Gas       | 198.4        | Gas       | 198.4        |
| Decatur County Industrial | 381031              | DEC CO IND 115.00  | <b>S1</b> | Solar     | 19           | Solar     | 19           |
| Decatur Solar             | 383303              | DECATUR SLR 34.500 | <b>S1</b> | Solar     | 200          | Solar     | 200          |
| Decatur Solar             | 383401              | DEC PKY SLR 34.500 | <b>S1</b> | Solar     | 79.9         | Solar     | 79.9         |
| Desoto Solar              | 383475              | SR DESOTO 34.500   | <b>S1</b> | Solar     | 263          | Solar     | 263          |
| Dodge Solar <sup>1</sup>  | 383328              | DODGE SLR 34.500   | <b>S1</b> | Solar     | 0            | Solar     | 0            |
| Dothan Solar <sup>1</sup> | 386014              | DOTHAN SLR 34.500  | <b>S1</b> | Solar     | 0            | Solar     | 0            |
| Dougherty Solar           | 383433              | DOUGH PV 34.500    | <b>S1</b> | Solar     | 130          | Solar     | 130          |
| Doyle                     | 383871              | DOYLE 1 14.400     | 1         | Gas       | 56           | Gas       | 56           |
| Doyle                     | 383872              | DOYLE 2 13.800     | 2         | Gas       | 57           | Gas       | 57           |
| Doyle                     | 383873              | DOYLE 3 13.800     | 3         | Gas       | 57           | Gas       | 57           |
| Doyle                     | 383874              | DOYLE 4 13.800     | 4         | Gas       | 71.8         | Gas       | 71.8         |
| Doyle                     | 383875              | DOYLE 5 13.800     | 5         | Gas       | 71.7         | Gas       | 71.7         |
| Drawhorn Solar            | 383323              | DRAWHRNLOW 34.500  | <b>S1</b> | Solar     | 0            | Solar     | 80           |
| Dublin Biomass 1          | 383787              | DUBLIN B1 12.500   | 1         | Biomass   | 29           | Biomass   | 29           |
| East Atmore Solar         | 386002              | ATMORESOLAR 34.500 | <b>S1</b> | Solar     | 80           | Solar     | 80           |
| East Berlin               | 381888              | E BERLIN 230.00    | <b>S1</b> | Solar     | 20           | Solar     | 20           |
| Effingham                 | 383867              | EFFHAM 1ST 18.000  | 1         | Gas       | 199          | Gas       | 199          |
| Effingham                 | 383868              | EFFHAM 1A 18.000   | 1A        | Gas       | 173          | Gas       | 173          |
| Effingham                 | 383869              | EFFHAM 1B 18.000   | 1B        | Gas       | 173          | Gas       | 173          |
| Fall Line Solar           | 383408              | FALL LN SLR 115.00 | <b>S1</b> | Solar     | 20           | Solar     | 20           |
| Farley                    | 386461              | FARLEY 1 22.000    | 1         | Nuclear   | 919.6        | Nuclear   | 919.6        |
| Farley                    | 386462              | FARLEY 2 22.000    | 2         | Nuclear   | 907.1        | Nuclear   | 907.1        |
| Flint Biomass             | 383786              | FLINT BIO 13.800   | 1         | Biomass   | 27           | Biomass   | 27           |
| Flint Biomass             | 383786              | FLINT BIO 13.800   | 2         | Biomass   | 29.8         | Biomass   | 29.8         |

| Summer Peak 2026 & 203 | 4 Regional SERTP V3 M | odels              |    | 202       | 26           | 203       | 34           |
|------------------------|-----------------------|--------------------|----|-----------|--------------|-----------|--------------|
| Plant                  | <b>Bus Number</b>     | Bus Name           | Id | Fuel Type | Pmax<br>(MW) | Fuel Type | Pmax<br>(MW) |
| Flint River Dam        | 383538                | FLINT HYDRO 2.3000 | 1  | Hydro     | 6.4          | Hydro     | 6.4          |
| Foley Solar            | 386003                | FOLEYSOLAR 34.500  | S1 | Solar     | 80           | Solar     | 80           |
| Fort Benning Solar     | 383411                | BENNING SLR 115.00 | S1 | Solar     | 30           | Solar     | 30           |
| Fort Rucker Solar      | 386034                | RUCKER SLR 115.00  | S1 | Solar     | 10.6         | Solar     | 10.6         |
| Fort Valley Solar      | 382323                | FT VALLEY 115.00   | S1 | Solar     | 10.7         | Solar     | 10.7         |
| Fountain Solar         | 317764                | 2FOUNTAIN_PV0.6300 | S1 | Solar     | 76.2         | Solar     | 76.2         |
| Franklin               | 383671                | FRANKLIN1ST 18.000 | 1  | Gas       | 221          | Gas       | 221          |
| Franklin               | 383672                | FRANKLIN 1A 18.000 | 1A | Gas       | 187          | Gas       | 187          |
| Franklin               | 383673                | FRANKLIN 1B 18.000 | 1B | Gas       | 187          | Gas       | 187          |
| Franklin               | 383674                | FRANKLIN2ST 21.000 | 2  | Gas       | 288.4        | Gas       | 288.4        |
| Franklin               | 383675                | FRANKLIN 2A 18.000 | 2A | Gas       | 187          | Gas       | 187          |
| Franklin               | 383676                | FRANKLIN 2B 18.000 | 2B | Gas       | 187          | Gas       | 187          |
| Franklin               | 383677                | FRANKLIN3ST 21.000 | 3  | Gas       | 291.7        | Gas       | 291.7        |
| Franklin               | 383678                | FRANKLIN 3A 18.000 | 3A | Gas       | 183.3        | Gas       | 183.3        |
| Franklin               | 383679                | FRANKLIN 3B 18.000 | 3B | Gas       | 183.3        | Gas       | 183.3        |
| Gantt Hydro            | 317134                | 2GANTT GSU 2.3000  | H1 | Hydro     | 2.6          | Hydro     | 2.6          |
| Gaston                 | 386411                | GASTON 1 15.000    | 1  | Gas       | 127          | Gas       | 127          |
| Gaston                 | 386411                | GASTON 1 15.000    | 1L | Gas       | 127          | Gas       | 127          |
| Gaston                 | 386412                | GASTON 2 15.000    | 2  | Gas       | 128          | Gas       | 128          |
| Gaston                 | 386412                | GASTON 2 15.000    | 2L | Gas       | 128          | Gas       | 128          |
| Gaston                 | 386413                | GASTON 3 15.000    | 3  | Gas       | 127          | Gas       | 127          |
| Gaston                 | 386413                | GASTON 3 15.000    | 3L | Gas       | 102          | Gas       | 102          |
| Gaston                 | 386414                | GASTON 4 15.000    | 4  | Gas       | 128          | Gas       | 128          |
| Gaston                 | 386414                | GASTON 4 15.000    | 4L | Gas       | 102.6        | Gas       | 102.6        |
| Gaston                 | 386415                | GASTON 5 18.000    | 5  | Coal      | 894.5        | Gas       | 949.5        |
| Gaston                 | 386416                | GASTON A 13.800    | Α  | Gas       | 16           | Gas       | 16           |
| George Dam 1           | 383551                | GEORGE 1 13.800    | 1  | Hydro     | 40.5         | Hydro     | 40.5         |

| Summer Peak 2026 & 2034 | 4 Regional SERTP V3 M | odels              |           | 202       | 26           | 203       | 34           |
|-------------------------|-----------------------|--------------------|-----------|-----------|--------------|-----------|--------------|
| Plant                   | <b>Bus Number</b>     | Bus Name           | Id        | Fuel Type | Pmax<br>(MW) | Fuel Type | Pmax<br>(MW) |
| George Dam 2            | 383552                | GEORGE 2 13.800    | 2         | Hydro     | 40.5         | Hydro     | 40.5         |
| George Dam 3            | 383553                | GEORGE 3 13.800    | 3         | Hydro     | 40.5         | Hydro     | 40.5         |
| George Dam 4            | 383554                | GEORGE 4 13.800    | 4         | Hydro     | 40.5         | Hydro     | 40.5         |
| Goat Rock Dam           | 383520                | GOATROCK 12.000    | 3         | Hydro     | 5            | Hydro     | 5            |
| Goat Rock Dam           | 383520                | GOATROCK 12.000    | 4         | Hydro     | 5            | Hydro     | 5            |
| Goat Rock Dam           | 383520                | GOATROCK 12.000    | 7         | Hydro     | 9.3          | Hydro     | 9.3          |
| Goat Rock Dam           | 383520                | GOATROCK 12.000    | 8         | Hydro     | 9.3          | Hydro     | 9.3          |
| Goat Rock Dam           | 383521                | GOATRK 56 4.2000   | 5         | Hydro     | 5            | Hydro     | 5            |
| Goat Rock Dam           | 383521                | GOATRK 56 4.2000   | 6         | Hydro     | 5            | Hydro     | 5            |
| Goodsprings Battery     | 386026                | GOODSP BESS 34.500 | B1        | Battery   | 0            | Battery   | 150          |
| Gordon Solar            | 383412                | GORDON SLR 34.500  | <b>S1</b> | Solar     | 30           | Solar     | 30           |
| Greene County           | 386441                | GREENE CO 1 20.000 | 1         | Gas       | 257.8        | Gas       | 257.8        |
| Greene County           | 386442                | GREENE CO 2 20.000 | 2         | Gas       | 258.3        | Gas       | 258.3        |
| Greene County           | 386450                | GREENCOA 13.800    | А         | Gas       | 84           | Gas       | 84           |
| Greene County           | 386451                | GREENCOB 13.800    | В         | Gas       | 82           | Gas       | 82           |
| Greene County           | 386452                | GREENCOC 13.800    | С         | Gas       | 81           | Gas       | 81           |
| Greene County           | 386453                | GREENCOD 13.800    | D         | Gas       | 82           | Gas       | 82           |
| Greene County           | 386454                | GREENCOE 13.800    | Е         | Gas       | 81           | Gas       | 81           |
| Greene County           | 386455                | GREENCOF 13.800    | F         | Gas       | 80           | Gas       | 80           |
| Greene County           | 386456                | GREENCOG 13.800    | G         | Gas       | 83           | Gas       | 83           |
| Greene County           | 386457                | GREENCOH 13.800    | Н         | Gas       | 82           | Gas       | 82           |
| Greene County           | 386458                | GREENCOI 13.800    | - 1       | Gas       | 85           | Gas       | 85           |
| GRP Franklin Bio        | 383481                | GRP FRK BIO 13.800 | 1         | Biomass   | 58           | Biomass   | 58           |
| GRP Madison Bio         | 383486                | GRP MAD BIO 13.800 | 1         | Biomass   | 58           | Biomass   | 58           |
| Hammond BESS            | 383325                | HAMBESSLOW 34.500  | B1        | Battery   | 0            | Battery   | 57.5         |
| Harris                  | 386491                | HARRIS 1ST 21.000  | 1         | Gas       | 294          | Gas       | 294          |
| Harris                  | 386492                | HARRIS 1A 18.000   | 1A        | Gas       | 174          | Gas       | 174          |

| Summer Peak 2026 & 2034 F            | Regional SERTP V3 M | odels              |           | 202       | 26           | 203       | 34           |
|--------------------------------------|---------------------|--------------------|-----------|-----------|--------------|-----------|--------------|
| Plant                                | Bus Number          | Bus Name           | Id        | Fuel Type | Pmax<br>(MW) | Fuel Type | Pmax<br>(MW) |
| Harris                               | 386493              | HARRIS 1B 18.000   | 1B        | Gas       | 174          | Gas       | 174          |
| Harris                               | 386494              | HARRIS 2ST 21.000  | 2         | Gas       | 286.6        | Gas       | 286.6        |
| Harris                               | 386495              | HARRIS 2A 18.000   | 2A        | Gas       | 185          | Gas       | 185          |
| Harris                               | 386496              | HARRIS 2B 18.000   | 2B        | Gas       | 185          | Gas       | 185          |
| Harris Dam                           | 386531              | HARISGEN 13.800    | 1         | Hydro     | 62           | Hydro     | 62           |
| Harris Dam                           | 386531              | HARISGEN 13.800    | 2         | Hydro     | 62           | Hydro     | 62           |
| Hatch                                | 383811              | HATCH 1 24.000     | 1         | Nuclear   | 880.2        | Nuclear   | 880.2        |
| Hatch                                | 383812              | HATCH 2 24.000     | 2         | Nuclear   | 889.7        | Nuclear   | 889.7        |
| Hattiesburg Solar                    | 386888              | HATTIESB SL 34.500 | S1        | Solar     | 50.8         | Solar     | 50.8         |
| Hawk Road                            | 383927              | HAWK RD 1 18.000   | 1         | Gas       | 153.4        | Gas       | 153.4        |
| Hawk Road                            | 383928              | HAWK RD 2 18.000   | 2         | Gas       | 151          | Gas       | 151          |
| Hawk Road                            | 383929              | HAWK RD 3 18.000   | 3         | Gas       | 153          | Gas       | 153          |
| Hazelhurst Solar 1                   | 383428              | SR HAZLE 1 115.00  | S1        | Solar     | 20           | Solar     | 20           |
| Hazelhurst Solar 3                   | 383429              | SR HAZLE 3 34.500  | S1        | Solar     | 40.8         | Solar     | 40.8         |
| Hazlehurst Solar 2                   | 383427              | SR HAZLE 2 34.500  | S1        | Solar     | 52           | Solar     | 52           |
| Henry Dam                            | 386501              | HENRYGEN 11.500    | 1         | Hydro     | 62           | Hydro     | 62           |
| Hickory Solar & Storage <sup>1</sup> | 383329              | HICKORY SLR 34.500 | B1        | Battery   | 0            | Battery   | 0            |
| Hickory Solar & Storage <sup>1</sup> | 383329              | HICKORY SLR 34.500 | <b>S1</b> | Solar     | 0            | Solar     | 0            |
| Hillabee                             | 386437              | HILL ST1 23.000    | 1         | Gas       | 94.4         | Gas       | 94.4         |
| Hillabee                             | 386438              | HILLCT1A 16.000    | 1A        | Gas       | 78.8         | Gas       | 78.8         |
| Hillabee                             | 386439              | HILLCT1B 16.000    | 1B        | Gas       | 78.8         | Gas       | 78.8         |
| Hobnail Solar                        | 383468              | HOBNAIL SLR 34.500 | S1        | Solar     | 70           | Solar     | 70           |
| Hog Bayou                            | 386089              | HOGBAYOU 1 13.800  | 1         | Gas       | 74           | Gas       | 74           |
| Hog Bayou                            | 386090              | HOGBAYOU1A 18.000  | 1A        | Gas       | 150          | Gas       | 150          |
| Holt Dam                             | 384355              | HOLT GEN 13.800    | 1         | Hydro     | 45           | Hydro     | 45           |
| Hope Hull Solar <sup>1</sup>         | 386011              | HOPEHUL SLR 34.500 | S1        | Solar     | 0            | Solar     | 0            |
| Jeffersonville <sup>1</sup>          | 380813              | JEFFERSONVL 115.00 | S1        | Solar     | 20           | Solar     | 20           |

| Summer Peak 2026 & 2034      | Regional SERTP V3 M | lodels             |           | 202       | 26           | 203       | 34           |
|------------------------------|---------------------|--------------------|-----------|-----------|--------------|-----------|--------------|
| Plant                        | Bus Number          | Bus Name           | Id        | Fuel Type | Pmax<br>(MW) | Fuel Type | Pmax<br>(MW) |
| Jordan Dam                   | 386561              | JORD1GEN 12.000    | 1         | Hydro     | 28           | Hydro     | 28           |
| Jordan Dam                   | 386561              | JORD1GEN 12.000    | 2         | Hydro     | 28           | Hydro     | 28           |
| Jordan Dam                   | 386563              | JORD3GEN 12.000    | 3         | Hydro     | 28           | Hydro     | 28           |
| Jordan Dam                   | 386563              | JORD3GEN 12.000    | 4         | Hydro     | 28           | Hydro     | 28           |
| Kingsbay Solar               | 383414              | KNGSBAY SLR 34.500 | B1        | Battery   | 0            | Battery   | 0            |
| Kingston Solar <sup>1</sup>  | 383332              | KINGSTN SLR 34.500 | S1        | Solar     | 0            | Solar     | 0            |
| Lancaster Solar              | 383435              | LANCSTR SLR 34.500 | S1        | Solar     | 80           | Solar     | 80           |
| Lauderdale East Solar        | 386889              | LAUDR E SLR 34.500 | S1        | Solar     | 55           | Solar     | 55           |
| Laurens I Solar <sup>1</sup> | 383326              | LRENS 1 SLR 34.500 | <b>S1</b> | Solar     | 0            | Solar     | 0            |
| Lay Dam                      | 386541              | LAY1-3GN 11.500    | 1         | Hydro     | 87           | Hydro     | 87           |
| Lay Dam                      | 386544              | LAY4-6GN 11.500    | 4         | Hydro     | 87           | Hydro     | 87           |
| LG&E Monroe                  | 383862              | LGEMONROE1 16.000  | 1         | Gas       | 153          | Gas       | 153          |
| LG&E Monroe                  | 383863              | LGEMONROE2 16.000  | 2         | Gas       | 156          | Gas       | 156          |
| LG&E Monroe                  | 383864              | LGEMONROE3 16.000  | 3         | Gas       | 156          | Gas       | 156          |
| Lindsay Hill                 | 386423              | LHILL 1ST 22.000   | 1         | Gas       | 93.4         | Gas       | 361          |
| Lindsay Hill                 | 386424              | LHILL 1A 18.000    | 1A        | Gas       | 42.2         | Gas       | 163          |
| Lindsay Hill                 | 386425              | LHILL 1B 18.000    | 1B        | Gas       | 42.2         | Gas       | 163          |
| Lindsay Hill                 | 386426              | LHILL 1C 18.000    | 1C        | Gas       | 42.2         | Gas       | 163          |
| Liveoak Solar                | 383403              | LIVEOAK SLR 34.500 | S1        | Solar     | 51           | Solar     | 51           |
| Lloyd Shoals Dam             | 383501              | LLOYD SHL 2.3000   | 1         | Hydro     | 19.6         | Hydro     | 19.6         |
| Lowman EC 1                  | 317712              | 2LOWMANEC1 19.000  | 1         | Gas       | 384          | Gas       | 384          |
| Lowman EC 2                  | 317713              | 2LOWMANEC2 21.000  | 2         | Gas       | 257          | Gas       | 257          |
| Lowndes County               | 386083              | LOWDN CO1 13.800   | 1         | Gas       | 11.9         | Gas       | 11.9         |
| Lowndes County               | 386084              | LOWDN CO2 13.800   | 1A        | Gas       | 72.6         | Gas       | 72.6         |
| Lumpkin Solar                | 383470              | SR LUMPKIN 34.500  | S1        | Solar     | 100          | Solar     | 100          |
| Martin Dam                   | 386521              | LMARTGEN 13.800    | 1         | Hydro     | 120          | Hydro     | 120          |
| Martin Dam                   | 386551              | MART1GEN 12.000    | 1         | Hydro     | 45.9         | Hydro     | 45.9         |

| Summer Peak 2026 & 2034 | Regional SERTP V3 M | odels              |    | 202       | 26           | 203       | 34           |
|-------------------------|---------------------|--------------------|----|-----------|--------------|-----------|--------------|
| Plant                   | <b>Bus Number</b>   | Bus Name           | Id | Fuel Type | Pmax<br>(MW) | Fuel Type | Pmax<br>(MW) |
| Martin Dam              | 386552              | MART2GEN 12.000    | 2  | Hydro     | 37.7         | Hydro     | 37.7         |
| Martin Dam              | 386553              | MART3GEN 12.000    | 3  | Hydro     | 37.7         | Hydro     | 37.7         |
| Martin Dam              | 386554              | MART4GEN 12.000    | 4  | Hydro     | 57.1         | Hydro     | 57.1         |
| McDonough               | 383600              | MCDON 3B 13.800    | 3B | Gas       | 40           | Gas       | 40           |
| McDonough               | 383878              | MCDON 4ST 18.000   | 4  | Gas       | 375          | Gas       | 375          |
| McDonough               | 383879              | MCDON 4A 21.000    | 4A | Gas       | 246          | Gas       | 246          |
| McDonough               | 383880              | MCDON 4B 21.000    | 4B | Gas       | 246          | Gas       | 246          |
| McDonough               | 383883              | MCDON 6ST 18.000   | 6  | Gas       | 374          | Gas       | 374          |
| McDonough               | 383884              | MCDON 6A 21.000    | 6A | Gas       | 242          | Gas       | 242          |
| McDonough               | 383885              | MCDON 6B 21.000    | 6B | Gas       | 242          | Gas       | 242          |
| McDonough               | 383886              | MCDON 3A 13.800    | 3A | Gas       | 40           | Gas       | 40           |
| McDonough               | 383961              | MCDON 5ST 18.000   | 5  | Gas       | 374          | Gas       | 374          |
| McDonough               | 383962              | MCDON 5A 21.000    | 5A | Gas       | 242          | Gas       | 242          |
| McDonough               | 383963              | MCDON 5B 21.000    | 5B | Gas       | 242          | Gas       | 242          |
| McGrau Ford Battery     | 383399              | MCGRAU BESS 34.500 | B1 | Battery   | 265          | Battery   | 530          |
| McIntosh                | 389122              | MCINCT-1 13.800    | 1  | Gas       | 82.2         | Gas       | 82.2         |
| McIntosh                | 389123              | MCINCT-2 13.800    | 2  | Gas       | 82.2         | Gas       | 82.2         |
| McIntosh                | 389124              | MCINCT-3 13.800    | 3  | Gas       | 82.2         | Gas       | 82.2         |
| McIntosh                | 389125              | MCINCT-4 13.800    | 4  | Gas       | 82.2         | Gas       | 82.2         |
| McIntosh                | 389126              | MCINCT-5 13.800    | 5  | Gas       | 82.2         | Gas       | 82.2         |
| McIntosh                | 389127              | MCINCT-6 13.800    | 6  | Gas       | 82.2         | Gas       | 82.2         |
| McIntosh                | 389128              | MCINCT-7 13.800    | 7  | Gas       | 82.2         | Gas       | 82.2         |
| McIntosh                | 389129              | MCINCT-8 13.800    | 8  | Gas       | 82.2         | Gas       | 82.2         |
| McIntosh                | 389131              | MCINT 10ST 21.000  | 10 | Gas       | 283.4        | Gas       | 283.4        |
| McIntosh                | 389132              | MCINT 10A 21.000   | 1A | Gas       | 192.3        | Gas       | 192.3        |
| McIntosh                | 389133              | MCINT 10B 21.000   | 1B | Gas       | 192.3        | Gas       | 192.3        |
| McIntosh                | 389134              | MCINT 11ST 21.000  | 11 | Gas       | 283          | Gas       | 283          |





| Summer Peak 2026 & 20 | 034 Regional SERTP V3 M | odels             |    | 202       | 26           | 2034      |              |
|-----------------------|-------------------------|-------------------|----|-----------|--------------|-----------|--------------|
| Plant                 | Bus Number              | Bus Name          | Id | Fuel Type | Pmax<br>(MW) | Fuel Type | Pmax<br>(MW) |
| McIntosh              | 389135                  | MCINT 11A 21.000  | 1A | Gas       | 192          | Gas       | 192          |
| McIntosh              | 389136                  | MCINT 11B 21.000  | 1B | Gas       | 192          | Gas       | 192          |
| McIntosh 1            | 317721                  | 2MCNTSH1G 13.800  | 1  | Gas       | 110          | Gas       | 110          |
| McIntosh 2            | 317722                  | 2MCNTSH2G 13.800  | 2  | Gas       | 114          | Gas       | 114          |
| McIntosh 3            | 317723                  | 2MCNTSH3G 13.800  | 3  | Gas       | 114          | Gas       | 114          |
| McIntosh 4            | 317754                  | 2MCNTSH4G 16.500  | 4  | Gas       | 172          | Gas       | 172          |
| McIntosh 5            | 317755                  | 2MCNTSH5G 16.500  | 5  | Gas       | 173          | Gas       | 173          |
| Mclb Solar            | 383415                  | 2MCWLMS3G 13.800  | S1 | Solar     | 31           | Solar     | 31           |
| McManus               | 383821                  | 2MCWLMS4G 13.800  | 4A | Gas       | 44.4         | Gas       | 44.4         |
| McManus               | 383822                  | 2MCNTSH4G 16.500  | 4B | Gas       | 44.4         | Gas       | 44.4         |
| McManus               | 383823                  | 2MCNTSH5G 16.500  | 4C | Gas       | 44.4         | Gas       | 44.4         |
| McManus               | 383824                  | MCMANUS 4D 13.800 | 4D | Gas       | 44.4         | Gas       | 44.4         |
| McManus               | 383825                  | MCMANUS 4E 13.800 | 4E | Gas       | 44.4         | Gas       | 44.4         |
| McManus               | 383826                  | MCMANUS 4F 13.800 | 4F | Gas       | 44.4         | Gas       | 44.4         |
| McManus               | 383833                  | MCMANUS 3A 13.800 | 3A | Gas       | 44.4         | Gas       | 44.4         |
| McManus               | 383834                  | MCMANUS 3B 13.800 | 3B | Gas       | 44.4         | Gas       | 44.4         |
| McManus               | 383835                  | MCMANUS 3C 13.800 | 3C | Gas       | 44.4         | Gas       | 44.4         |
| McWilliams 1          | 317731                  | 2MCWLMS1G 4.1600  | 1  | Gas       | 8            | Gas       | 8            |
| McWilliams 2          | 317732                  | 2MCWLMS2G 4.1600  | 2  | Gas       | 8            | Gas       | 8            |
| McWilliams 3          | 317733                  | 2MCWLMS3G 13.800  | 3  | Gas       | 17           | Gas       | 17           |
| McWilliams 4          | 317734                  | 2MCWLMS4G 13.800  | 4  | Gas       | 119          | Gas       | 119          |
| Metter Solar          | 383318                  | METTER SLR 34.500 | S1 | Solar     | 80           | Solar     | 80           |
| Mid Georgia           | 383711                  | MID GA 1ST 13.800 | 1  | Gas       | 96           | Gas       | 96           |
| Mid Georgia           | 383712                  | MID GA 1A 13.800  | 1A | Gas       | 102          | Gas       | 102          |
| Mid Georgia           | 383713                  | MID GA 1B 13.800  | 1B | Gas       | 102          | Gas       | 102          |
| Miller                | 386401                  | MILLER 1 24.000   | 1  | Coal      | 695          | Coal      | 695          |
| Miller                | 386402                  | MILLER 2 24.000   | 2  | Coal      | 701          | Coal      | 701          |

| Summer Peak 2026 & 2034       | Regional SERTP V3 M | odels              |           | 20        | 26           | 203       | 34           |
|-------------------------------|---------------------|--------------------|-----------|-----------|--------------|-----------|--------------|
| Plant                         | <b>Bus Number</b>   | Bus Name           | Id        | Fuel Type | Pmax<br>(MW) | Fuel Type | Pmax<br>(MW) |
| Miller                        | 386403              | MILLER 3 24.000    | 3         | Coal      | 701          | Coal      | 701          |
| Miller                        | 386404              | MILLER 4 24.000    | 4         | Coal      | 712          | Coal      | 712          |
| Millers Ferry Dam             | 385402              | MILERSFY1 13.800   | 1         | Hydro     | 30           | Hydro     | 30           |
| Millers Ferry Dam             | 385403              | MILERSFY2 13.800   | 2         | Hydro     | 30           | Hydro     | 30           |
| Millers Ferry Dam             | 385404              | MILERSFY3 13.800   | 3         | Hydro     | 30           | Hydro     | 30           |
| Mitchell Dam                  | 386574              | MITC4GEN 6.6000    | 4         | Hydro     | 19           | Hydro     | 19           |
| Mitchell Dam                  | 386575              | MITC5GEN 13.800    | 5         | Hydro     | 48           | Hydro     | 48           |
| Mitchell Dam                  | 386575              | MITC5GEN 13.800    | 6         | Hydro     | 48           | Hydro     | 48           |
| Mitchell Dam                  | 386575              | MITC5GEN 13.800    | 7         | Hydro     | 48           | Hydro     | 48           |
| Monroe Power                  | 383860              | MONROEPWR 1 13.800 | 1         | Gas       | 154.5        | Gas       | 154.5        |
| Monroe Power                  | 383861              | MONROEPWR 2 13.800 | 2         | Gas       | 154.5        | Gas       | 154.5        |
| Montgomery Solar <sup>1</sup> | 386015              | MONTGY SLR 34.500  | S1        | Solar     | 0            | Solar     | 0            |
| Moody Air Force Solar         | 383417              | MAFB SLR 34.500    | S1        | Solar     | 50           | Solar     | 50           |
| Moonshot Solar                | 386841              | MOONSHOT SL 34.500 | S1        | Solar     | 78.5         | Solar     | 78.5         |
| Morgan Falls Dam              | 383500              | MORGAN F 4.2000    | 1         | Hydro     | 10.7         | Hydro     | 10.7         |
| Mossy Branch Battery          | 383400              | MOSSY BESS 34.500  | B1        | Battery   | 65           | Battery   | 65           |
| MS Bainbridge                 | 383890              | MSBAINBR 13.800    | 1         | Gas       | 80           | Gas       | 80           |
| Newton Solar <sup>1</sup>     | 386846              | NEWTON SLR 34.500  | S1        | Solar     | 0            | Solar     | 0            |
| North Highlands Dam           | 383525              | N HIGHLAND 12.000  | 1         | Hydro     | 34.4         | Hydro     | 34.4         |
| Notch 4 Solar                 | 386000              | NOTCH4 34.500      | <b>S1</b> | Solar     | 80           | Solar     | 80           |
| Notch 5 Solar                 | 386001              | NOTCH5 34.500      | S1        | Solar     | 80           | Solar     | 80           |
| Oakman Solar 1                | 386007              | OAKMAN SLR1 34.500 | S1        | Solar     | 0            | Solar     | 80           |
| Oakman Solar 2                | 386008              | OAKMAN SLR2 34.500 | S1        | Solar     | 0            | Solar     | 80           |
| Old Hayneville Solar          | 386096              | OLDHAYSOLAR 34.500 | <b>S1</b> | Solar     | 80           | Solar     | 80           |
| Old Midville Solar            | 383402              | MIDVIL SLR 115.00  | S1        | Solar     | 20           | Solar     | 20           |
| Oliver Dam 1                  | 383522              | OLIVER 1 7.2000    | 1         | Hydro     | 17.7         | Hydro     | 17.7         |
| Oliver Dam 2                  | 383523              | OLIVER 2 7.6000    | 2         | Hydro     | 17.7         | Hydro     | 17.7         |

| Summer Peak 2026 & 2034       | Regional SERTP V3 M | odels                     |           | 202             | 26           | 203             | 34           |
|-------------------------------|---------------------|---------------------------|-----------|-----------------|--------------|-----------------|--------------|
| Plant                         | Bus Number          | Bus Name                  | Id        | Fuel Type       | Pmax<br>(MW) | Fuel Type       | Pmax<br>(MW) |
| Oliver Dam 3                  | 383524              | OLIVER 3-4 7.6000         | 3         | Hydro           | 17.7         | Hydro           | 17.7         |
| Oliver Dam 4                  | 383524              | OLIVER 3-4 7.6000         | 4         | Hydro           | 6            | Hydro           | 6            |
| OPC Hartwell                  | 383881              | OPCHWE 1 18.000           | 1         | Gas             | 153          | Gas             | 153          |
| OPC Hartwell                  | 383882              | OPCHWE 2 18.000           | 2         | Gas             | 153          | Gas             | 153          |
| Origis Solar                  | 386046              | LAFAYTE SLR 34.500        | <b>S1</b> | Solar           | 80           | Solar           | 80           |
| Origis Solar                  | 386887              | ORIGIS SLR 34.500         | <b>S1</b> | Solar           | 52           | Solar           | 52           |
| Paw Solar                     | 383407              | PAW PAW SLR 230.00        | <b>S1</b> | Solar           | 30           | Solar           | 30           |
| Perry Solar                   | 383439              | SR PERRY 34.500           | <b>S1</b> | Solar           | 68           | Solar           | 68           |
| Piedmont                      | 383777              | PIEDMNT BIO 13.800        | 1         | Biomass         | 55           | Biomass         | 55           |
| Pine Ridge                    | 383497              | PINE RIDGE 24.950         | 1         | Biomass         | 7            | Biomass         | 7            |
| Pinewood Solar <sup>1</sup>   | 383341              | PINEWD SLR 34.500         | <b>S1</b> | Solar           | 0            | Solar           | 0            |
| Point A Hydro                 | 317071              | 2_1POINTA_HY2.3000        | H1        | Hydro           | 8            | Hydro           | 8            |
| Quitman II Solar              | 383449              | <b>QUITMAN2 PV 34.500</b> | <b>S1</b> | Solar           | 150          | Solar           | 150          |
| Quitman Solar                 | 383444              | QUITMAN1 PV 34.500        | <b>S1</b> | Solar           | 150          | Solar           | 150          |
| Rabun Gap                     | 383775              | RABUN BIO 13.800          | 1         | Biomass         | 18           | Biomass         | 18           |
| Ratcliffe                     | 386891              | RATCLF1ST_N 18.000        | 1         | Gas             | 331.4        | Gas             | 331.4        |
| Ratcliffe                     | 386892              | RATCLF1A_N 18.000         | 1A        | Gas             | 195.9        | Gas             | 195.9        |
| Ratcliffe                     | 386893              | RATCLF1B_N 18.000         | 1B        | Gas             | 195.9        | Gas             | 195.9        |
| RF Henry Dam                  | 385401              | RF HENRY 13 13.800        | 1         | Hydro           | 82           | Hydro           | 82           |
| Rice Creek Solar <sup>1</sup> | 386010              | RICECRK SLR 34.500        | S1        | Solar           | 0            | Solar           | 0            |
| Richland Creek                | 383498              | RICHLD CK 4.2000          | 1         | Biomass         | 11           | Biomass         | 11           |
| Rincon Solar                  | 383422              | RINCON SLR 34.500         | S1        | Solar           | 16           | Solar           | 16           |
| Robins AFB Solar              | 383416              | RAFB SLR 34.500           | <b>S1</b> | Solar           | 128          | Solar           | 128          |
| Robins Air Force Base         | 383741              | RAFB CT A 13.800          | А         | Gas             | 80           | Gas             | 80           |
| Robins Air Force Base         | 383742              | RAFB CT B 13.800          | В         | Gas             | 80           | Gas             | 80           |
| Rock House Solar <sup>1</sup> | 383315              | RK HSE SLR 34.500         | S1        | Solar           | 0            | Solar           | 0            |
| Rocky Mountain                | 383511              | ROCKY MTN 1 20.000        | 1         | Pumped<br>Hydro | 272.3        | Pumped<br>Hydro | 272.3        |





| Summer Peak 2026 & 2034 Re               | egional SERTP V3 M | odels                     |           | 20              | 26           | 203             | 34           |
|------------------------------------------|--------------------|---------------------------|-----------|-----------------|--------------|-----------------|--------------|
| Plant                                    | Bus Number         | Bus Name                  | Id        | Fuel Type       | Pmax<br>(MW) | Fuel Type       | Pmax<br>(MW) |
| Rocky Mountain                           | 383512             | ROCKY MTN 2 20.000        | 2         | Pumped<br>Hydro | 272.3        | Pumped<br>Hydro | 272.3        |
| Rocky Mountain                           | 383513             | ROCKY MTN 3 20.000        | 3         | Pumped<br>Hydro | 272.3        | Pumped<br>Hydro | 272.3        |
| Rumble Road                              | 383721             | RMBL CT1 13.800           | 1         | Gas             | 112          | Gas             | 112          |
| Rumble Road                              | 383722             | RMBL CT2 13.800           | 2         | Gas             | 112          | Gas             | 112          |
| SA Solar <sup>1</sup>                    | 383331             | SA SOLAR 34.500           | S1        | Solar           | 0            | Solar           | 0            |
| Sandersville Solar                       | 383322             | SNDRSVLSLR 34.500         | <b>S1</b> | Solar           | 0            | Solar           | 50           |
| Sandhills 2 Solar & Battery <sup>1</sup> | 383340             | SANDHL2 SLR 34.500        | B1        | Battery         | 0            | Battery         | 0            |
| Sandhills 2 Solar & Battery <sup>1</sup> | 383340             | SANDHL2 SLR 34.500        | <b>S1</b> | Solar           | 0            | Solar           | 0            |
| Sandhills Solar                          | 383409             | SANDHLS SLR 34.500        | S1        | Solar           | 143          | Solar           | 143          |
| Saturn Solar 1                           | 386004             | <b>SATURN SLR1 34.500</b> | <b>S1</b> | Solar           | 0            | Solar           | 80           |
| Saturn Solar 2                           | 386005             | SATURN SLR2 34.500        | S1        | Solar           | 0            | Solar           | 80           |
| Scherer                                  | 383681             | SCHERER 1 25.000          | 1         | Coal            | 860          | Coal            | 860          |
| Scherer                                  | 383682             | SCHERER 2 25.000          | 2         | Coal            | 881.0001     | Coal            | 807          |
| Scherer                                  | 383683             | SCHERER 3 25.000          | 3         | Coal            | 881.0001     | Coal            | 660.75       |
| Sewell Creek                             | 383851             | SEWCRK 21 13.800          | 21        | Gas             | 137          | Gas             | 137          |
| Sewell Creek                             | 383852             | SEWCRK 22 13.800          | 22        | Gas             | 138          | Gas             | 138          |
| Sewell Creek                             | 383853             | SEWCRK 11 13.800          | 11        | Gas             | 115.5        | Gas             | 115.5        |
| Sewell Creek                             | 383854             | SEWCRK 12 13.800          | 12        | Gas             | 116.5        | Gas             | 116.5        |
| Shelby Solar <sup>1</sup>                | 386012             | SHELBY SLR 34.500         | S1        | Solar           | 0            | Solar           | 0            |
| Shubuta Creek Solar                      | 386845             | SHBUTA SLR 34.500         | S1        | Solar           | 0            | Solar           | 156          |
| Simon                                    | 383798             | SSFGEN 34.500             | S1        | Solar           | 30           | Solar           | 30           |
| Sinclair Dam 1                           | 383548             | SINCLAIR 1 6.9000         | 1         | Hydro           | 19.3         | Hydro           | 19.3         |
| Sinclair Dam 2                           | 383549             | SINCLAIR 2 6.9000         | 2         | Hydro           | 19.3         | Hydro           | 19.3         |
| Smith Dam                                | 384142             | SMITH GN 13.800           | 1         | Hydro           | 82.5         | Hydro           | 82.5         |
| Smith Dam                                | 384142             | SMITH GN 13.800           | 2         | Hydro           | 82.5         | Hydro           | 82.5         |
| Snipesville Solar I                      | 383471             | SR SNPSVL 1 34.500        | <b>S1</b> | Solar           | 86           | Solar           | 86           |

| Summer Peak 2026 & 2034 Reg     | gional SERTP V3 M | lodels                    |           | 20        | 26           | 203       | 34           |
|---------------------------------|-------------------|---------------------------|-----------|-----------|--------------|-----------|--------------|
| Plant                           | <b>Bus Number</b> | Bus Name                  | Id        | Fuel Type | Pmax<br>(MW) | Fuel Type | Pmax<br>(MW) |
| Snipesville Solar II            | 383472            | SR SNPSVL 2 34.500        | S1        | Solar     | 117.5        | Solar     | 117.5        |
| Snipesville Solar III           | 383473            | SR SNPSVL 3 34.500        | <b>S1</b> | Solar     | 107          | Solar     | 107          |
| Sonny Solar                     | 383454            | SONNY PV 34.500           | S1        | Solar     | 40           | Solar     | 40           |
| Southern Oak Solar (Camilla II) | 383440            | SO OAK PV 1 34.500        | <b>S1</b> | Solar     | 160          | Solar     | 160          |
| Sowega                          | 383791            | BACNTN 1 13.800           | 1         | Gas       | 32.7         | Gas       | 32.7         |
| Sowega                          | 383792            | BACNTN 2 13.800           | 2         | Gas       | 32.7         | Gas       | 32.7         |
| Sowega                          | 383802            | BACNTN 3 13.800           | 3         | Gas       | 32.6         | Gas       | 32.6         |
| Sowega                          | 383803            | BACNTN 4 13.800           | 4         | Gas       | 32.7         | Gas       | 32.7         |
| Sowega                          | 383804            | BACNTN 5 13.800           | 5         | Gas       | 32.7         | Gas       | 32.7         |
| Sowega                          | 383805            | BACNTN 6 13.800           | 6         | Gas       | 32.6         | Gas       | 32.6         |
| Spring Branch                   | 381493            | SPRING BRN 115.00         | <b>S1</b> | Solar     | 25           | Solar     | 25           |
| SR Ailey Solar                  | 383476            | <b>SR AILEY PV 34.500</b> | <b>S1</b> | Solar     | 80           | Solar     | 80           |
| SR Bacon                        | 383320            | SR BACON 34.500           | <b>S1</b> | Solar     | 0            | Solar     | 300          |
| SR Robbins                      | 383319            | SR ROBBINS 34.500         | <b>S1</b> | Solar     | 0            | Solar     | 250          |
| SR Rochelle                     | 383324            | SR ROCHLOW 34.500         | <b>S1</b> | Solar     | 0            | Solar     | 140          |
| Stagecoach Solar                | 383424            | STAGECH SLR 34.500        | <b>S1</b> | Solar     | 80           | Solar     | 80           |
| Steamroller Solar               | 386844            | STMRLR SLR 34.500         | S1        | Solar     | 0            | Solar     | 150          |
| Stwart Solar                    | 383413            | STEWART SLR 34.500        | B1        | Battery   | 13           | Battery   | 13           |
| Stwart Solar                    | 383413            | STEWART SLR 34.500        | <b>S1</b> | Solar     | 13           | Solar     | 13           |
| Sweatt                          | 386800            | SWEATT A 13.800           | Α         | Gas       | 32           | Gas       | 32           |
| T.A. Smith I                    | 383604            | TA SMITH 1S 18.000        | 1         | Gas       | 289.8        | Gas       | 289.8        |
| T.A. Smith I                    | 383605            | TA SMITH 1A 18.000        | 1A        | Gas       | 185          | Gas       | 185          |
| T.A. Smith I                    | 383606            | TA SMITH 1B 18.000        | 1B        | Gas       | 183          | Gas       | 183          |
| T.A. Smith II                   | 383607            | TA SMITH 2S 18.000        | 2         | Gas       | 290          | Gas       | 290          |
| T.A. Smith II                   | 383608            | TA SMITH 2A 18.000        | 2A        | Gas       | 185          | Gas       | 185          |
| T.A. Smith II                   | 383609            | TA SMITH 2B 18.000        | 2B        | Gas       | 183          | Gas       | 183          |
| Talbot County                   | 383911            | TALBOT 1 13.800           | 1         | Gas       | 114.2        | Gas       | 114.2        |

| Summer Peak 2026 & 2034 F | Regional SERTP V3 M | odels              |    | 20        | 26           | 203       | 34           |
|---------------------------|---------------------|--------------------|----|-----------|--------------|-----------|--------------|
| Plant                     | <b>Bus Number</b>   | Bus Name           | Id | Fuel Type | Pmax<br>(MW) | Fuel Type | Pmax<br>(MW) |
| Talbot County             | 383912              | TALBOT 2 13.800    | 2  | Gas       | 113          | Gas       | 113          |
| Talbot County             | 383913              | TALBOT 3 13.800    | 3  | Gas       | 110.3        | Gas       | 110.3        |
| Talbot County             | 383914              | TALBOT 4 13.800    | 4  | Gas       | 114.5        | Gas       | 114.5        |
| Talbot County             | 383915              | TALBOT 5 13.800    | 5  | Gas       | 113.7        | Gas       | 113.7        |
| Talbot County             | 383916              | TALBOT 6 13.800    | 6  | Gas       | 114          | Gas       | 114          |
| Talbot County             | 383917              | TALBOT 7 18.000    | 7  | Gas       | 0            | Gas       | 250          |
| Tallulah Falls Dam 1      | 383542              | TALLULAH 1 6.6000  | 1  | Hydro     | 11.4         | Hydro     | 11.4         |
| Tallulah Falls Dam 2      | 383543              | TALLULAH 2 6.6000  | 2  | Hydro     | 11.4         | Hydro     | 11.4         |
| Tallulah Falls Dam 3      | 383544              | TALLULAH 3 6.6000  | 3  | Hydro     | 11.4         | Hydro     | 11.4         |
| Tallulah Falls Dam 4      | 383545              | TALLULAH 4 6.6000  | 4  | Hydro     | 11.4         | Hydro     | 11.4         |
| Tallulah Falls Dam 5      | 383546              | TALLULAH 5 6.6000  | 5  | Hydro     | 11.4         | Hydro     | 11.4         |
| Tallulah Falls Dam 6      | 383547              | TALLULAH 6 6.6000  | 6  | Hydro     | 11.4         | Hydro     | 11.4         |
| Tanglewood Solar          | 383446              | TANGLE SLR 34.500  | S1 | Solar     | 60           | Solar     | 60           |
| Tenaska - Heard County    | 383921              | TENSKA GA 1 18.000 | 1  | Gas       | 157.5        | Gas       | 157.5        |
| Tenaska - Heard County    | 383922              | TENSKA GA 2 18.000 | 2  | Gas       | 157.5        | Gas       | 157.5        |
| Tenaska - Heard County    | 383923              | TENSKA GA 3 18.000 | 3  | Gas       | 157.5        | Gas       | 157.5        |
| Tenaska - Heard County    | 383924              | TENSKA GA 4 18.000 | 4  | Gas       | 157.5        | Gas       | 157.5        |
| Tenaska - Heard County    | 383925              | TENSKA GA 5 18.000 | 5  | Gas       | 157.5        | Gas       | 157.5        |
| Tenaska - Heard County    | 383926              | TENSKA GA 6 18.000 | 6  | Gas       | 157.5        | Gas       | 157.5        |
| Terrell County Solar      | 383430              | SR TERRELL 34.500  | S1 | Solar     | 74           | Solar     | 74           |
| Terrora Dam               | 383530              | TERRORA 6.6000     | 1  | Hydro     | 19.8         | Hydro     | 19.8         |
| Theodore                  | 386085              | THEO 1 13.800      | 1  | Gas       | 64           | Gas       | 64           |
| Theodore                  | 386086              | THEO A 18.000      | 1A | Gas       | 167          | Gas       | 167          |
| Thurlgen                  | 386591              | THURLGEN 13.800    | 1  | Hydro     | 69.4         | Hydro     | 69.4         |
| Thurlgen                  | 386591              | THURLGEN 13.800    | 3  | Hydro     | 10           | Hydro     | 10           |
| Tiger Creek               | 383855              | TIGER CK1 18.000   | 1  | Gas       | 158          | Gas       | 158          |
| Tiger Creek               | 383856              | TIGER CK2 18.000   | 2  | Gas       | 158          | Gas       | 158          |

| Summer Peak 2026 & 2034        | Regional SERTP V3 M | odels              |    | 20              | 26           | 203             | 34           |
|--------------------------------|---------------------|--------------------|----|-----------------|--------------|-----------------|--------------|
| Plant                          | <b>Bus Number</b>   | Bus Name           | Id | Fuel Type       | Pmax<br>(MW) | Fuel Type       | Pmax<br>(MW) |
| Tiger Creek                    | 383857              | TIGER CK3 18.000   | 3  | Gas             | 157          | Gas             | 157          |
| Tiger Creek                    | 383858              | TIGER CK4 18.000   | 4  | Gas             | 157          | Gas             | 157          |
| Timberland Solar               | 383308              | TMBRLND SLR 34.500 | B1 | Battery         | 0            | Battery         | 0            |
| Timberland Solar               | 383308              | TMBRLND SLR 34.500 | S1 | Solar           | 140          | Solar           | 140          |
| Toombs Solar                   | 383431              | SR TOOMBS 34.500   | S1 | Solar           | 250          | Solar           | 250          |
| Tri-State Solar 1 <sup>1</sup> | 383342              | TRI ST SLR1 34.500 | S1 | Solar           | 0            | Solar           | 0            |
| Tri-State Solar 2 <sup>1</sup> | 383344              | TRI ST SLR2 34.500 | S1 | Solar           | 0            | Solar           | 0            |
| Tugalo Dam                     | 383532              | TUGALO 1-2 6.6000  | 1  | Hydro           | 22.2         | Hydro           | 22.2         |
| Tugalo Dam                     | 383533              | TUGALO 3-4 6.6000  | 3  | Hydro           | 22.2         | Hydro           | 22.2         |
| Turkey Run Solar               | 383450              | HICK PK PV 34.500  | S1 | Solar           | 195.5        | Solar           | 195.5        |
| Twiggs Solar                   | 383443              | TWIGGS SLR 34.500  | S1 | Solar           | 200          | Solar           | 200          |
| Tyre Bridge Solar <sup>1</sup> | 383343              | TYRE BG SLR 34.500 | S1 | Solar           | 0            | Solar           | 0            |
| USMC Supply                    | 380714              | USMC SUPPLY 115.00 | 1  | Biomass         | 12.5         | Biomass         | 12.5         |
| Vann Unit 1                    | 317701              | 2VANN 1G 18.000    | 1  | Gas             | 170          | Gas             | 170          |
| Vann Unit 2                    | 317702              | 2VANN 2G 18.000    | 2  | Gas             | 170          | Gas             | 170          |
| Vann Unit 3                    | 317703              | 2VANN 3G 18.000    | 3  | Gas             | 182          | Gas             | 182          |
| Vogtle                         | 383751              | VOGTLE1 25.000     | 1  | Nuclear         | 1158.4       | Nuclear         | 1158.4       |
| Vogtle                         | 383752              | VOGTLE2 25.000     | 2  | Nuclear         | 1160.5       | Nuclear         | 1160.5       |
| Vogtle                         | 383753              | VOGTLE3 26.000     | 3  | Nuclear         | 1114         | Nuclear         | 1114         |
| Vogtle                         | 383754              | VOGTLE4 26.000     | 4  | Nuclear         | 1114         | Nuclear         | 1114         |
| Wadley Solar                   | 383305              | WADLEY SLR 34.500  | S1 | Solar           | 260          | Solar           | 260          |
| Walker Springs III Solar       | 317841              | 2WALKERSPGEN0.7000 | S1 | Solar           | 81.4         | Solar           | 81.4         |
| Walker Springs Solar           | 386027              | WLKR SPR I 34.500  | S1 | Solar           | 80           | Solar           | 80           |
| Walker Springs Solar           | 386028              | WLKR SPR II 34.500 | S1 | Solar           | 80           | Solar           | 80           |
| Wallace Dam 1                  | 383536              | WALLACE 1-3 14.400 | 1  | Pumped<br>Hydro | 50.7         | Pumped<br>Hydro | 50.7         |
| Wallace Dam 2                  | 383536              | WALLACE 1-3 14.400 | 2  | Pumped<br>Hydro | 50.7         | Pumped<br>Hydro | 50.7         |





| Summer Peak 2026 & 2034 F    | Regional SERTP V3 M | odels              |    | 202             | 26           | 203             | 34           |
|------------------------------|---------------------|--------------------|----|-----------------|--------------|-----------------|--------------|
| Plant                        | Bus Number          | Bus Name           | Id | Fuel Type       | Pmax<br>(MW) | Fuel Type       | Pmax<br>(MW) |
| Wallace Dam 3                | 383536              | WALLACE 1-3 14.400 | 3  | Pumped<br>Hydro | 56.8         | Pumped<br>Hydro | 56.8         |
| Wallace Dam 4                | 383537              | WALLACE 4-6 14.400 | 4  | Pumped<br>Hydro | 54.8         | Pumped<br>Hydro | 54.8         |
| Wallace Dam 5                | 383537              | WALLACE 4-6 14.400 | 5  | Pumped<br>Hydro | 50.7         | Pumped<br>Hydro | 50.7         |
| Wallace Dam 6                | 383537              | WALLACE 4-6 14.400 | 6  | Pumped<br>Hydro | 50.7         | Pumped<br>Hydro | 50.7         |
| Walton Discover              | 383905              | WALT DISC 1 13.800 | 1  | Gas             | 50           | Gas             | 50           |
| Walton Discover              | 383906              | WALT DISC 2 13.800 | 2  | Gas             | 50           | Gas             | 50           |
| Wansley                      | 383623              | WANSLEY 6ST 18.000 | 6  | Gas             | 220          | Gas             | 220          |
| Wansley                      | 383624              | WANSLEY 6A 18.000  | 6A | Gas             | 177.5        | Gas             | 177.5        |
| Wansley                      | 383625              | WANSLEY 6B 18.000  | 6B | Gas             | 177.5        | Gas             | 177.5        |
| Wansley                      | 383626              | WANSLEY 7ST 18.000 | 7  | Gas             | 226.5        | Gas             | 226.5        |
| Wansley                      | 383627              | WANSLEY 7A 18.000  | 7A | Gas             | 184.1        | Gas             | 184.1        |
| Wansley                      | 383628              | WANSLEY 7B 18.000  | 7B | Gas             | 184.1        | Gas             | 184.1        |
| Wansley                      | 383629              | WANSLEY 9ST 18.000 | 1  | Gas             | 192.6        | Gas             | 192.6        |
| Wansley                      | 383630              | WANSLEY 9A 18.000  | 1A | Gas             | 138          | Gas             | 138          |
| Wansley                      | 383631              | WANSLEY 9B 18.000  | 1B | Gas             | 138          | Gas             | 138          |
| Warrenton Solar <sup>1</sup> | 383333              | WARENTN SLR 34.500 | B1 | Battery         | 0            | Battery         | 0            |
| Warrenton Solar <sup>1</sup> | 383333              | WARENTN SLR 34.500 | S1 | Solar           | 0            | Solar           | 0            |
| Warthen                      | 383743              | WARTHEN 1 13.800   | 1  | Gas             | 69           | Gas             | 69           |
| Warthen                      | 383744              | WARTHEN 2 13.800   | 2  | Gas             | 69           | Gas             | 69           |
| Warthen                      | 383745              | WARTHEN 3 13.800   | 3  | Gas             | 69           | Gas             | 69           |
| Warthen                      | 383746              | WARTHEN 4 13.800   | 4  | Gas             | 69           | Gas             | 69           |
| Warthen                      | 383747              | WARTHEN 5 13.800   | 5  | Gas             | 44           | Gas             | 44           |
| Warthen                      | 383748              | WARTHEN 6 13.800   | 6  | Gas             | 69           | Gas             | 69           |
| Warthen                      | 383749              | WARTHEN 7 13.800   | 7  | Gas             | 69           | Gas             | 69           |

| Summer Peak 2026 & 2034 R      |                   | 202                | 26 | 203       | 34           |           |              |
|--------------------------------|-------------------|--------------------|----|-----------|--------------|-----------|--------------|
| Plant                          | <b>Bus Number</b> | Bus Name           | Id | Fuel Type | Pmax<br>(MW) | Fuel Type | Pmax<br>(MW) |
| Warthen                        | 383750            | WARTHEN 8 13.800   | 8  | Gas       | 12           | Gas       | 12           |
| Washington County              | 386081            | WASH CO 1 13.800   | 1  | Gas       | 22.8         | Gas       | 22.8         |
| Washington County              | 386082            | WASH CO 2 13.800   | 1A | Gas       | 77.9         | Gas       | 77.9         |
| Washington County Solar        | 383464            | WSHCNTY SLR 34.500 | S1 | Solar     | 150          | Solar     | 150          |
| Watson                         | 386850            | WATSON A 13.800    | Α  | Gas       | 33           | Gas       | 33           |
| Watson                         | 386854            | WATSON 4 20.000    | 4  | Gas       | 271.5        | Gas       | 271.5        |
| Watson                         | 386855            | WATSON 5 24.000    | 5  | Gas       | 516          | Gas       | 516          |
| Weiss Dam                      | 386511            | WEISSGEN 11.500    | 1  | Hydro     | 71           | Hydro     | 71           |
| West Point Dam                 | 383508            | W PT DAM 13.800    | 1  | Hydro     | 87           | Hydro     | 87           |
| Weyerhauser Biomass            | 389199            | WEYERPW BIO 13.800 | 1  | Biomass   | 14           | Biomass   | 14.8         |
| Weyerhauser Biomass            | 389199            | WEYERPW BIO 13.800 | 2  | Biomass   | 14           | Biomass   | 14           |
| White Oak Solar                | 383404            | WHT OAK SLR 34.500 | S1 | Solar     | 76.5         | Solar     | 76.5         |
| White Pine Solar               | 383405            | WH PINE SLR 34.500 | S1 | Solar     | 102          | Solar     | 102          |
| Wilson                         | 383761            | WILSON A 13.800    | Α  | Gas       | 41           | Gas       | 41           |
| Wilson                         | 383762            | WILSON B 13.800    | В  | Gas       | 56           | Gas       | 56           |
| Wilson                         | 383763            | WILSON C 13.800    | С  | Gas       | 49           | Gas       | 49           |
| Wilson                         | 383764            | WILSON D 13.800    | D  | Gas       | 41           | Gas       | 41           |
| Wilson                         | 383765            | WILSON E 13.800    | Е  | Gas       | 54           | Gas       | 54           |
| Wilson                         | 383766            | WILSON F 13.800    | F  | Gas       | 54           | Gas       | 54           |
| Wilsonville Solar <sup>1</sup> | 383327            | WILSNVL SLR 34.500 | S1 | Solar     | 0            | Solar     | 0            |
| Wing Solar                     | 317129            | 2WINGSOLAR1G34.500 | S1 | Solar     | 80           | Solar     | 80           |
| Wolfskin Solar                 | 383469            | WLFSKIN SLR 34.500 | S1 | Solar     | 38           | Solar     | 38           |
| Yates 10                       | 383650            | YATES 10 19.000    | 10 | Gas       | 0            | Gas       | 408          |
| Yates 6                        | 383646            | YATES 6 22.000     | 6  | Gas       | 355.5        | Gas       | 355.5        |
| Yates 7                        | 383647            | YATES 7 22.000     | 7  | Gas       | 358.5        | Gas       | 358.5        |
| Yates 8                        | 383648            | YATES 8 19.000     | 8  | Gas       | 0            | Gas       | 408          |
| Yates 9                        | 383649            | YATES 9 19.000     | 9  | Gas       | 0            | Gas       | 408          |

| Summer Peak 2026 & 2034 Regional SERTP V3 Models |                   |                 |    |           | 26           | 2034      |              |
|--------------------------------------------------|-------------------|-----------------|----|-----------|--------------|-----------|--------------|
| Plant                                            | <b>Bus Number</b> | Bus Name        | Id | Fuel Type | Pmax<br>(MW) | Fuel Type | Pmax<br>(MW) |
| Yates Dam                                        | 384448            | YATE GEN 6.9000 | 1  | Hydro     | 46           | Hydro     | 46           |
| Yonah Dam                                        | 383534            | YONAH 6.6000    | 1  | Hydro     | 25.4         | Hydro     | 25.4         |

<sup>&</sup>lt;sup>1</sup> Generation with Notice To Proceed (NTP), but no transmission delivery service rights.



## XII. Appendix 7: TVA BAA

The following information provides a more granular overview of the TVA BAA input assumptions and transmission expansion plan that are incorporated in the development of the SERTP regional transmission plan.

Table A7.1: 2024 SERTP Regional Transmission Plan – Transmission Project Snapshot by operating voltage (TVA BAA)

| TVA BAA                                     | 100-120 | 121-150 | 151-199 | 200-299 | 300-399 | 400-550 |
|---------------------------------------------|---------|---------|---------|---------|---------|---------|
| I VA BAA                                    | kV      | kV      | kV      | kV      | kV      | kV      |
| Transmission lines – New (Circuit Mi.)      |         |         | 187.4   |         |         | 2.2     |
| Transmission Lines – Uprates¹ (Circuit Mi.) |         |         | 176.75  |         |         |         |
| Transformers <sup>2</sup> – New             |         |         |         |         |         | 1       |
| Transformers <sup>2</sup> – Replacements    |         |         |         |         |         |         |

<sup>1</sup> A transmission line uprate may be the result of reconductoring and/or increasing the operating temperature/voltage along the transmission line.

Table A7.2: Interface commitments<sup>1</sup> modeled in the SERTP Summer Peak models – TVA BAA

| То                        | 2026 | 2029 | 2034 |
|---------------------------|------|------|------|
| PJM                       | -429 | 50   | 50   |
| MISO                      | 213  | 213  | 213  |
| Duke Progress West        | 14   | 14   | 14   |
| Southern                  | 43   | 41   | 40   |
| LG&E/KU                   | 3    | 3    | 3    |
| Brookfield/Smoky Mountain | -384 | -384 | -384 |
| APGI-Tapoco               | 0    | 0    | 0    |
| SPP                       | -73  | -73  | -73  |
| Owensboro Municipal       | 25   | 25   | 25   |
| Total                     | -588 | -111 | -112 |

<sup>&</sup>lt;sup>1</sup> A positive number represents a net export from the TVA BAA.

<sup>&</sup>lt;sup>2</sup> The voltages shown represent the operating voltages on the high side terminals of the transformer.



A detailed listing of the changes in generation assumptions within the TVA BAA throughout the ten (10) year planning horizon, including the year(s) in which they occur, is provided in Table A7.3 below. Furthermore, supplemental information regarding noteworthy generation expansion and retirements/decertifications included in the 2024 series set of SERTP power flow models is provided below, while Table A8.4 provides a listing of generation assumptions based upon long-term, firm point-to-point commitments. The capacity (MW) values shown for each year reflect summer peak conditions. Table A7.5 provides a listing of all generators modeled in the 2024 Version 3 Summer Peak power flow models.

Table A7.3: Changes in Generation Assumptions Based Upon LSEs – TVA BAA

| SITE                 | <b>FUEL TYPE</b> | 2025 | 2026 | 2027 | 2028 | 2029 | 2030 | 2031 | 2032 | 2033 | 2034 |
|----------------------|------------------|------|------|------|------|------|------|------|------|------|------|
| Johnsonville CT      | Gas              | 0    |      |      |      |      |      |      |      |      |      |
| Cumberland FP Unit 2 | Coal             | 1130 | 1130 | 0    |      |      |      |      |      |      |      |
| Cumberland FP Unit 1 | Coal             | 1130 | 1130 | 1130 | 1130 | 0    |      |      |      |      |      |
| Kingston FP          | Coal             | 1157 | 1157 | 1157 | 0    |      |      |      |      |      |      |
| Johnsonville Aeros   | Gas              | 530  | 530  | 530  | 530  | 530  | 530  | 530  | 530  | 530  | 530  |
| Cumberland CC        | Gas              |      |      | 1346 | 1346 | 1346 | 1346 | 1346 | 1346 | 1346 | 1346 |
| Kingston CC          | Gas              |      |      |      | 715  | 715  | 715  | 715  | 715  | 715  | 715  |
| Kingston Aero        | Gas              |      |      |      | 848  | 848  | 848  | 848  | 848  | 848  | 848  |
| Trifecta             | Solar            |      |      | 68   | 68   | 68   | 68   | 68   | 68   | 68   | 68   |
| Hillsboro III        | Solar            |      |      | 200  | 200  | 200  | 200  | 200  | 200  | 200  | 200  |
| Spring Valley II     | Solar            |      |      | 200  | 200  | 200  | 200  | 200  | 200  | 200  | 200  |
| Lawrence County      | Solar            |      | 100  | 100  | 100  | 100  | 100  | 100  | 100  | 100  | 100  |
| Okolona              | Solar            |      |      | 145  | 145  | 145  | 145  | 145  | 145  | 145  | 145  |
| Normandy             | Solar            |      | 213  | 213  | 213  | 213  | 213  | 213  | 213  | 213  | 213  |
| Horus KY             | Solar            |      | 69.3 | 69.3 | 69.3 | 69.3 | 69.3 | 69.3 | 69.3 | 69.3 | 69.3 |

Table A7.4: Generation Assumptions Based Upon Expected Long-term, Firm Point-to-Point Commitments – TVA BAA

| SITE | 2025 | 2026 | 2027 | 2028 | 2029 | 2030 | 2031 | 2032 | 2033 | 2034 |
|------|------|------|------|------|------|------|------|------|------|------|
|      |      |      |      | None |      |      |      |      |      |      |



Table A7.5: Generating Units Modeled in the 2024 Version 3 Summer Peak Power flow Model – TVA BAA

| Summer Peak 2026 & 2 | 2034 Regional SER | TP V3 Models       |    | 20        | 26        | 20        | 34        |
|----------------------|-------------------|--------------------|----|-----------|-----------|-----------|-----------|
| Plant                | <b>Bus Number</b> | <b>Bus Name</b>    | Id | Fuel Type | Pmax (MW) | Fuel Type | Pmax (MW) |
| Browns Ferry         | 364001            | 1BR FERRY N122.000 | 1  | Nuclear   | 1297.6    | Nuclear   | 1297.6    |
| Browns Ferry         | 364002            | 1BR FERRY N222.000 | 1  | Nuclear   | 1311.4    | Nuclear   | 1311.4    |
| Browns Ferry         | 364003            | 1BR FERRY N322.000 | 1  | Nuclear   | 1302.5    | Nuclear   | 1302.5    |
| Sequoyah             | 364011            | 1SEQUOYAH N124.000 | 1  | Nuclear   | 1209.24   | Nuclear   | 1209.24   |
| Sequoyah             | 364012            | 1SEQUOYAH N224.000 | 1  | Nuclear   | 1193.24   | Nuclear   | 1193.24   |
| Watts Bar            | 364021            | 1WBNP N1 24.000    | 1  | Nuclear   | 1324.1    | Nuclear   | 1324.1    |
| Watts Bar            | 364022            | 1WBNP N2 24.000    | 2  | Nuclear   | 1293.89   | Nuclear   | 1293.89   |
| Optimist             | 364023            | 00PTMST SLR 0.6300 | 1  | Solar     | 205       | Solar     | 205       |
| Bell Buckle          | 364025            | OBELLBUCKSOLO.6000 | 1  | Solar     | 35        | Solar     | 35        |
| Canadaville          | 364027            | OCANADA SOL 0.6000 | 1  | Solar     | 16        | Solar     | 16        |
| Millington II        | 364030            | OMILLNGTN IIO.6900 | 1  | Solar     | 75        | Solar     | 75        |
| Normandy Lake        | 364031            | ONORMNDY SLRO.6000 | 1  | Solar     | 215       | Solar     | 215       |
| Optimist             | 364032            | 00PTMST BAT 0.6000 | 1  | Battery   | 50        | Battery   | 50        |
| Optimist             | 364032            | 00PTMST BAT 0.6000 | Р  | Battery   | 0         | Battery   | 0         |
| Hillsboro            | 364033            | OHLSBRO3 SOL0.6000 | 1  | N/A       | N/A       | Solar     | 212.976   |
| Spring Valley        | 364034            | OSPR VLY SOLO.6000 | 1  | N/A       | N/A       | Solar     | 211.604   |
| Okolona              | 364035            | 00KOLONA SOL0.7000 | 1  | N/A       | N/A       | Solar     | 147.024   |
| Trifecta             | 364036            | OTRIFCTA SOLO.6000 | 1  | N/A       | N/A       | Solar     | 68.4      |
| Skyhawk              | 364037            | 1SKYHAWK SOL34.500 | 1  | Solar     | 100       | Solar     | 100       |
| Russellville         | 364040            | ORUSSVIL SOLO.6000 | 1  | Solar     | 180       | Solar     | 180       |
| Ridgely Lake County  | 364044            | 1RIDGELY SOL34.500 | 1  | Solar     | 177       | Solar     | 177       |
| Latitude             | 364048            | 1LATIT SOLAR13.000 | 1  | Solar     | 15        | Solar     | 15        |
| Providence           | 364049            | OPROV SOLAR 0.8000 | 1  | Solar     | 16.1      | Solar     | 16.1      |
| Selmer Farm          | 364050            | OSELMER FARMO.2000 | 1  | Solar     | 17        | Solar     | 17        |
| Mulberry             | 364053            | OMULB SOLAR 0.2000 | 1  | Solar     | 16        | Solar     | 16        |
| River Bend           | 364054            | ORIVER BEND 0.5500 | 1  | Solar     | 75        | Solar     | 75        |
| Millington           | 364055            | OMILNGTN SOL0.6900 | 1  | Solar     | 53        | Solar     | 53        |
| Wildberry            | 364056            | OWILDBRY SOL0.8000 | 1  | Solar     | 15        | Solar     | 15        |
|                      |                   |                    |    | •         |           | •         |           |

| Summer Peak 2026 & | 2034 Regional SER | TP V3 Models       |    | 20        | <b>)26</b> | 2034      |           |
|--------------------|-------------------|--------------------|----|-----------|------------|-----------|-----------|
| Plant              | <b>Bus Number</b> | Bus Name           | Id | Fuel Type | Pmax (MW)  | Fuel Type | Pmax (MW) |
| Muscle Shoals      | 364057            | OMUS SHL SLRO.6000 | 1  | Solar     | 228.5      | Solar     | 228.5     |
| Elora              | 364058            | OELORA SOLARO.6600 | 1  | Solar     | 150        | Solar     | 150       |
| Yum Yum            | 364059            | 0YUM YUM SOL0.5500 | 1  | Solar     | 148.5      | Solar     | 148.5     |
| Horus              | 364060            | OHORS SLR 0.6300   | 1  | Solar     | 69.3       | Solar     | 69.3      |
| Ardmore            | 364063            | OARDMORE SOLO.6500 | 1  | Solar     | 15.71      | Solar     | 15.71     |
| Selmer North 1     | 364064            | OSELMER NOR10.3900 | 1  | Solar     | 16.1       | Solar     | 16.1      |
| Selmer North 2     | 364065            | OSELMER NOR20.3900 | 1  | Solar     | 8.5        | Solar     | 8.5       |
| Golden Triangle 1  | 364067            | OGN TRI SOL10.6000 | 1  | Solar     | 200        | Solar     | 200       |
| Golden Triangle 1  | 364068            | OG TRI BAT1 0.6000 | 1  | Battery   | 50         | Battery   | 50        |
| Golden Triangle 1  | 364068            | OG TRI BAT1 0.6000 | Р  | Battery   | 0          | Battery   | 0         |
| McKellar           | 364070            | OMCKLLR SLR 0.6600 | 1  | Solar     | 70         | Solar     | 70        |
| Vonore BESS        | 364071            | 1VONORE BESS13.800 | 1  | Battery   | 20         | Battery   | 20        |
| Vonore BESS        | 364071            | 1VONORE BESS13.800 | Р  | Battery   | 0          | Battery   | 0         |
| Graceland          | 364074            | OGRACE SOLARO.6000 | 1  | Solar     | 152.5      | Solar     | 152.5     |
| Lawrence County    | 364075            | 1LAW CTY SOL34.500 | 1  | N/A       | N/A        | Solar     | 192       |
| Golden Triangle 2  | 364076            | 0 G TRI GEN20.6300 | 1  | Solar     | 150        | Solar     | 150       |
| Golden Triangle 2  | 364077            | 0 G TRI BAT20.6000 | 1  | Battery   | 50         | Battery   | 50        |
| Golden Triangle 2  | 364077            | 0 G TRI BAT20.6000 | Р  | Battery   | 0          | Battery   | 0         |
| North Adamsville   | 364078            | 1N ADAMSVILL26.000 | 1  | Solar     | 27         | Solar     | 27        |
| Colbert            | 364081            | 1COLBERT CT918.000 | 9  | Gas       | 240        | Gas       | 240       |
| Colbert            | 364082            | 1COLBERTCT1018.000 | 10 | Gas       | 240        | Gas       | 240       |
| Colbert            | 364083            | 1COLBERTCT1118.000 | 11 | Gas       | 240        | Gas       | 240       |
| Cumberland         | 364119            | 1CUMBRL F1HL22.000 | 1  | Coal      | 662.5      | Coal      | 662.5     |
| Cumberland         | 364119            | 1CUMBRL F1HL22.000 | 2  | Coal      | 662.5      | Coal      | 662.5     |
| Cumberland         | 364120            | 1CUMBRL F2HL22.000 | 1  | Coal      | 667.5      | Coal      | 0         |
| Cumberland         | 364120            | 1CUMBRL F2HL22.000 | 2  | Coal      | 656.5      | Coal      | 0         |
| Gallatin           | 364121            | 1GALLATIN F124.000 | 1  | Coal      | 240        | Coal      | 240       |
| Gallatin           | 364122            | 1GALLATIN F224.000 | 1  | Coal      | 240        | Coal      | 240       |
| Gallatin           | 364123            | 1GALLATIN F324.000 | 1  | Coal      | 281        | Coal      | 281       |
| Gallatin           | 364124            | 1GALLATIN F424.000 | 1  | Coal      | 281        | Coal      | 281       |
|                    |                   |                    |    |           |            |           |           |

| Summer Peak 2026 | & 2034 Regional SER | TP V3 Models       |    | 20        | )26       | 20        | 34        |
|------------------|---------------------|--------------------|----|-----------|-----------|-----------|-----------|
| Plant            | <b>Bus Number</b>   | <b>Bus Name</b>    | Id | Fuel Type | Pmax (MW) | Fuel Type | Pmax (MW) |
| Kingston         | 364151              | 1KINGSTON F118.000 | 1  | Coal      | 159.7     | Coal      | 0         |
| Kingston         | 364152              | 1KINGSTON F218.000 | 1  | Coal      | 144       | Coal      | 0         |
| Kingston         | 364153              | 1KINGSTON F318.000 | 1  | Coal      | 144       | Coal      | 0         |
| Kingston         | 364154              | 1KINGSTON F418.000 | 1  | Coal      | 144       | Coal      | 0         |
| Kingston         | 364155              | 1KINGSTON F520.000 | 1  | Coal      | 190       | Coal      | 0         |
| Kingston         | 364156              | 1KINGSTON F620.000 | 1  | Coal      | 190       | Coal      | 0         |
| Kingston         | 364157              | 1KINGSTON F720.000 | 1  | Coal      | 190       | Coal      | 0         |
| Kingston         | 364158              | 1KINGSTON F820.000 | 1  | Coal      | 190       | Coal      | 0         |
| Kingston         | 364159              | 1KINGSTON F920.000 | 1  | Coal      | 203.6     | Coal      | 0         |
| Shawnee          | 364171              | 1SHAWNEE F1 18.000 | 1  | Coal      | 143       | Coal      | 143       |
| Shawnee          | 364172              | 1SHAWNEE F2 18.000 | 1  | Coal      | 143       | Coal      | 143       |
| Shawnee          | 364173              | 1SHAWNEE F3 18.000 | 1  | Coal      | 143       | Coal      | 143       |
| Shawnee          | 364174              | 1SHAWNEE F4 18.000 | 1  | Coal      | 143       | Coal      | 143       |
| Shawnee          | 364175              | 1SHAWNEE F5 18.000 | 1  | Coal      | 143       | Coal      | 143       |
| Shawnee          | 364176              | 1SHAWNEE F6 18.000 | 1  | Coal      | 143       | Coal      | 143       |
| Shawnee          | 364177              | 1SHAWNEE F7 18.000 | 1  | Coal      | 143       | Coal      | 143       |
| Shawnee          | 364178              | 1SHAWNEE F8 18.000 | 1  | Coal      | 143       | Coal      | 143       |
| Shawnee          | 364179              | 1SHAWNEE F9 18.000 | 1  | Coal      | 143       | Coal      | 143       |
| Allen            | 364201              | 1ALLEN T1-4 13.800 | 1  | Gas       | 0         | Gas       | 0         |
| Allen            | 364201              | 1ALLEN T1-4 13.800 | 2  | Gas       | 0         | Gas       | 0         |
| Allen            | 364201              | 1ALLEN T1-4 13.800 | 3  | Gas       | 0         | Gas       | 0         |
| Allen            | 364201              | 1ALLEN T1-4 13.800 | 4  | Gas       | 0         | Gas       | 0         |
| Allen            | 364202              | 1ALLEN T5-8 13.800 | 5  | Gas       | 0         | Gas       | 0         |
| Allen            | 364202              | 1ALLEN T5-8 13.800 | 6  | Gas       | 0         | Gas       | 0         |
| Allen            | 364202              | 1ALLEN T5-8 13.800 | 7  | Gas       | 0         | Gas       | 0         |
| Allen            | 364202              | 1ALLEN T5-8 13.800 | 8  | Gas       | 0         | Gas       | 0         |
| Allen            | 364203              | 1ALLEN T9-1213.800 | 1  | Gas       | 0         | Gas       | 0         |
| Allen            | 364203              | 1ALLEN T9-1213.800 | 2  | Gas       | 0         | Gas       | 0         |
| Allen            | 364203              | 1ALLEN T9-1213.800 | 3  | Gas       | 0         | Gas       | 0         |
| Allen            | 364203              | 1ALLEN T9-1213.800 | 9  | Gas       | 0         | Gas       | 0         |

| <b>Summer Peak 2026</b> | & 2034 Regional SER | TP V3 Models       |    | 20        | )26       | 20        | )34       |
|-------------------------|---------------------|--------------------|----|-----------|-----------|-----------|-----------|
| Plant                   | <b>Bus Number</b>   | <b>Bus Name</b>    | Id | Fuel Type | Pmax (MW) | Fuel Type | Pmax (MW) |
| Allen                   | 364204              | 1ALLENT13-1613.800 | 1  | Gas       | 0         | Gas       | 0         |
| Allen                   | 364204              | 1ALLENT13-1613.800 | 2  | Gas       | 0         | Gas       | 0         |
| Allen                   | 364204              | 1ALLENT13-1613.800 | 3  | Gas       | 0         | Gas       | 0         |
| Allen                   | 364204              | 1ALLENT13-1613.800 | 4  | Gas       | 0         | Gas       | 0         |
| Allen                   | 364205              | 1ALLEN T17 13.800  | 1  | Gas       | 0         | Gas       | 0         |
| Allen                   | 364206              | 1ALLEN T18 13.800  | 1  | Gas       | 0         | Gas       | 0         |
| Allen                   | 364207              | 1ALLEN T19 13.800  | 1  | Gas       | 0         | Gas       | 0         |
| Allen                   | 364208              | 1ALLEN T20 13.800  | 1  | Gas       | 0         | Gas       | 0         |
| Colbert                 | 364211              | 1COLBERT T1 13.800 | 1  | Gas       | 49        | Gas       | 49        |
| Colbert                 | 364212              | 1COLBERT T2 13.800 | 2  | Gas       | 49        | Gas       | 49        |
| Colbert                 | 364213              | 1COLBERT T3 13.800 | 3  | Gas       | 49        | Gas       | 49        |
| Colbert                 | 364214              | 1COLBERT T4 13.800 | 4  | Gas       | 49        | Gas       | 49        |
| Colbert                 | 364215              | 1COLBERT T5 13.800 | 5  | Gas       | 49        | Gas       | 49        |
| Colbert                 | 364216              | 1COLBERT T6 13.800 | 6  | Gas       | 49        | Gas       | 49        |
| Colbert                 | 364217              | 1COLBERT T7 13.800 | 7  | Gas       | 49        | Gas       | 49        |
| Colbert                 | 364218              | 1COLBERT T8 13.800 | 8  | Gas       | 49        | Gas       | 49        |
| Gallatin                | 364221              | 1GALLATIN T113.800 | 1  | Gas       | 77        | Gas       | 77        |
| Gallatin                | 364222              | 1GALLATIN T213.800 | 2  | Gas       | 77        | Gas       | 77        |
| Gallatin                | 364223              | 1GALLATIN T313.800 | 3  | Gas       | 77        | Gas       | 77        |
| Gallatin                | 364224              | 1GALLATIN T413.800 | 4  | Gas       | 77        | Gas       | 77        |
| Gallatin                | 364225              | 1GALLATIN T513.800 | 5  | Gas       | 84        | Gas       | 84        |
| Gallatin                | 364226              | 1GALLATIN T613.800 | 6  | Gas       | 84        | Gas       | 84        |
| Gallatin                | 364227              | 1GALLATIN T713.800 | 7  | Gas       | 84        | Gas       | 84        |
| Gallatin                | 364228              | 1GALLATIN T813.800 | 8  | Gas       | 84        | Gas       | 84        |
| Gleason                 | 364231              | 1GLEASON T1 18.000 | 1  | Gas       | 171.33    | Gas       | 171.33    |
| Gleason                 | 364232              | 1GLEASON T2 18.000 | 2  | Gas       | 171.33    | Gas       | 171.33    |
| Gleason                 | 364233              | 1GLEASON T3 13.800 | 3  | Gas       | 171.34    | Gas       | 171.34    |
| Cumberland              | 364234              | 1CUMBCC CT1 24.000 | 1  | N/A       | N/A       | Gas       | 468       |
| Cumberland              | 364235              | 1CUMBCC CT2 24.000 | 1  | N/A       | N/A       | Gas       | 468       |
| Cumberland              | 364236              | 1CUMBCC ST3 26.000 | 1  | N/A       | N/A       | Gas       | 337       |
|                         |                     |                    |    |           |           |           |           |

| Summer Peak 2026 & 2 | 034 Regional SER  | TP V3 Models       |    | 20               | )26       | 20        | 34        |
|----------------------|-------------------|--------------------|----|------------------|-----------|-----------|-----------|
| Plant                | <b>Bus Number</b> | Bus Name           | Id | <b>Fuel Type</b> | Pmax (MW) | Fuel Type | Pmax (MW) |
| Cumberland           | 364237            | 1CUMBCC ST4 26.000 | 1  | N/A              | N/A       | Gas       | 337       |
| Johnsonville         | 364257            | 1JVILLE T17 13.800 | 1  | Gas              | 84        | Gas       | 84        |
| Johnsonville         | 364258            | 1JVILLE T18 13.800 | 1  | Gas              | 84        | Gas       | 84        |
| Johnsonville         | 364259            | 1JVILLE T19 13.800 | 1  | Gas              | 84        | Gas       | 84        |
| Johnsonville         | 364260            | 1JVILLE T20 13.800 | 1  | Gas              | 84        | Gas       | 84        |
| Kemper               | 364261            | 1KEMPER T1 13.800  | 1  | Gas              | 84        | Gas       | 84        |
| Kemper               | 364262            | 1KEMPER T2 13.800  | 1  | Gas              | 84        | Gas       | 84        |
| Kemper               | 364263            | 1KEMPER T3 13.800  | 1  | Gas              | 84        | Gas       | 84        |
| Kemper               | 364264            | 1KEMPER T4 13.800  | 1  | Gas              | 84        | Gas       | 84        |
| Lagoon Creek         | 364271            | 1LAG CRK T1 13.800 | 1  | Gas              | 85        | Gas       | 85        |
| Lagoon Creek         | 364272            | 1LAG CRK T2 13.800 | 1  | Gas              | 85        | Gas       | 85        |
| Lagoon Creek         | 364273            | 1LAG CRK T3 13.800 | 1  | Gas              | 85        | Gas       | 85        |
| Lagoon Creek         | 364274            | 1LAG CRK T4 13.800 | 1  | Gas              | 85        | Gas       | 85        |
| Lagoon Creek         | 364275            | 1LAG CRK T5 13.800 | 1  | Gas              | 85        | Gas       | 85        |
| Lagoon Creek         | 364276            | 1LAG CRK T6 13.800 | 1  | Gas              | 85        | Gas       | 85        |
| Lagoon Creek         | 364277            | 1LAG CRK T7 13.800 | 1  | Gas              | 85        | Gas       | 85        |
| Lagoon Creek         | 364278            | 1LAG CRK T8 13.800 | 1  | Gas              | 85        | Gas       | 85        |
| Lagoon Creek         | 364279            | 1LAG CRK T9 13.800 | 1  | Gas              | 84        | Gas       | 84        |
| Lagoon Creek         | 364280            | 1LAG CRK T1013.800 | 1  | Gas              | 84        | Gas       | 84        |
| Lagoon Creek         | 364281            | 1LAG CRK T1113.800 | 1  | Gas              | 84        | Gas       | 84        |
| Lagoon Creek         | 364282            | 1LAG CRK T1213.800 | 1  | Gas              | 84        | Gas       | 84        |
| Marshall             | 364291            | 1MARSHALL T113.800 | 1  | Gas              | 85.63     | Gas       | 85.63     |
| Marshall             | 364292            | 1MARSHALL T213.800 | 1  | Gas              | 85.63     | Gas       | 85.63     |
| Marshall             | 364293            | 1MARSHALL T313.800 | 1  | Gas              | 85.63     | Gas       | 85.63     |
| Marshall             | 364294            | 1MARSHALL T413.800 | 1  | Gas              | 85.63     | Gas       | 85.63     |
| Marshall             | 364295            | 1MARSHALL T513.800 | 1  | Gas              | 85.63     | Gas       | 85.63     |
| Marshall             | 364296            | 1MARSHALL T613.800 | 1  | Gas              | 85.63     | Gas       | 85.63     |
| Marshall             | 364297            | 1MARSHALL T713.800 | 1  | Gas              | 85.63     | Gas       | 85.63     |
| Marshall             | 364298            | 1MARSHALL T813.800 | 1  | Gas              | 85.63     | Gas       | 85.63     |
| Lagoon Creek         | 364301            | 1LAG CRK CT116.500 | 1  | Gas              | 175.22    | Gas       | 175.22    |

| Plant Lagoon Creek Lagoon Creek | 364302<br>364303 | Bus Name<br>1LAG CRK CT216.500 | Id | Fuel Type | Pmax (MW)      | Final Time | D / D 41.00 |
|---------------------------------|------------------|--------------------------------|----|-----------|----------------|------------|-------------|
| Lagoon Creek                    |                  | 1LAG CRK CT216.500             |    |           | FILIAX (IVIVV) | Fuel Type  | Pmax (MW)   |
|                                 | 364303           |                                | 1  | Gas       | 176.21         | Gas        | 176.21      |
| - 1                             |                  | 1LAG CRK STG18.000             | 1  | Gas       | 238.57         | Gas        | 238.57      |
| Paradise                        | 364304           | 1PARADIS CT118.000             | 1  | Gas       | 211            | Gas        | 211         |
| Paradise                        | 364305           | 1PARADIS CT218.000             | 2  | Gas       | 211            | Gas        | 211         |
| Paradise                        | 364306           | 1PARADIS CT318.000             | 3  | Gas       | 211            | Gas        | 211         |
| Paradise                        | 364307           | 1PARADIS S1 19.000             | 1  | Gas       | 467            | Gas        | 467         |
| Paradise                        | 364308           | 1PARADIS CT518.000             | 1  | Gas       | 240            | Gas        | 240         |
| Paradise                        | 364309           | 1PARADIS CT618.000             | 1  | Gas       | 240            | Gas        | 240         |
| Paradise                        | 364310           | 1PARADIS CT718.000             | 1  | Gas       | 240            | Gas        | 240         |
| John Sevier                     | 364321           | 1J SEVIER C118.000             | 1  | Gas       | 165.57         | Gas        | 165.57      |
| John Sevier                     | 364322           | 1J SEVIER C218.000             | 2  | Gas       | 165.57         | Gas        | 165.57      |
| John Sevier                     | 364323           | 1J SEVIER C318.000             | 3  | Gas       | 165.56         | Gas        | 165.56      |
| John Sevier                     | 364324           | 1J SEVIER S419.500             | 4  | Gas       | 377.3          | Gas        | 377.3       |
| Allen                           | 364325           | 1ALLENCC CT125.000             | 1  | Gas       | 314            | Gas        | 314         |
| Allen                           | 364326           | 1ALLENCC CT225.000             | 1  | Gas       | 314            | Gas        | 314         |
| Allen                           | 364327           | 1ALLENCC ST119.000             | 1  | Gas       | 454            | Gas        | 454         |
| Johnsonville                    | 364361           | 1JCT AERO 2113.800             | 21 | Gas       | 57.5           | Gas        | 57.5        |
| Johnsonville                    | 364362           | 1JCT AERO 2213.800             | 22 | Gas       | 57.5           | Gas        | 57.5        |
| Johnsonville                    | 364363           | 1JCT AERO 2313.800             | 23 | Gas       | 57.5           | Gas        | 57.5        |
| Johnsonville                    | 364364           | 1JCT AERO 2413.800             | 24 | Gas       | 57.5           | Gas        | 57.5        |
| Johnsonville                    | 364365           | 1JCT AERO 2513.800             | 25 | Gas       | 57.5           | Gas        | 57.5        |
| Johnsonville                    | 364366           | 1JCT AERO 2613.800             | 26 | Gas       | 57.5           | Gas        | 57.5        |
| Johnsonville                    | 364367           | 1JCT AERO 2713.800             | 27 | Gas       | 57.5           | Gas        | 57.5        |
| Johnsonville                    | 364368           | 1JCT AERO 2813.800             | 28 | Gas       | 57.5           | Gas        | 57.5        |
| Johnsonville                    | 364369           | 1JCT AERO 2913.800             | 29 | Gas       | 57.5           | Gas        | 57.5        |
| Johnsonville                    | 364370           | 1JCT AERO 3013.800             | 30 | Gas       | 57.5           | Gas        | 57.5        |
| Kingston                        | 364371           | 1KIG AERO 1 13.800             | 1  | N/A       | N/A            | Gas        | 58.43       |
| Kingston                        | 364372           | 1KIG AERO 2 13.800             | 1  | N/A       | N/A            | Gas        | 58.43       |
| Kingston                        | 364373           | 1KIG AERO 3 13.800             | 1  | N/A       | N/A            | Gas        | 58.43       |
| Kingston                        | 364374           | 1KIG AERO 4 13.800             | 1  | N/A       | N/A            | Gas        | 58.43       |

| Summer Peak 2026 & 2 | 2034 Regional SER | ΓP V3 Models       |    | 202          | 6         | 2034         |           |
|----------------------|-------------------|--------------------|----|--------------|-----------|--------------|-----------|
| Plant                | <b>Bus Number</b> | <b>Bus Name</b>    | Id | Fuel Type    | Pmax (MW) | Fuel Type    | Pmax (MW) |
| Kingston             | 364375            | 1KIG AERO 5 13.800 | 1  | N/A          | N/A       | Gas          | 58.43     |
| Kingston             | 364376            | 1KIG AERO 6 13.800 | 1  | N/A          | N/A       | Gas          | 58.43     |
| Kingston             | 364377            | 1KIG AERO 7 13.800 | 1  | N/A          | N/A       | Gas          | 58.43     |
| Kingston             | 364378            | 1KIG AERO 8 13.800 | 1  | N/A          | N/A       | Gas          | 58.43     |
| Kingston             | 364379            | 1KIG AERO 9 13.800 | 1  | N/A          | N/A       | Gas          | 58.43     |
| Kingston             | 364380            | 1KIG AERO 1013.800 | 1  | N/A          | N/A       | Gas          | 58.43     |
| Kingston             | 364381            | 1KIG AERO 1113.800 | 1  | N/A          | N/A       | Gas          | 58.43     |
| Kingston             | 364382            | 1KIG AERO 1213.800 | 1  | N/A          | N/A       | Gas          | 58.43     |
| Kingston             | 364383            | 1KIG AERO 1313.800 | 1  | N/A          | N/A       | Gas          | 58.43     |
| Kingston             | 364384            | 1KIG AERO 1413.800 | 1  | N/A          | N/A       | Gas          | 58.43     |
| Kingston             | 364385            | 1KIG AERO 1513.800 | 1  | N/A          | N/A       | Gas          | 58.43     |
| Kingston             | 364386            | 1KIG AERO 1613.800 | 1  | N/A          | N/A       | Gas          | 58.43     |
| Kingston             | 364387            | 1KIG CT 17 24.000  | 1  | N/A          | N/A       | Gas          | 395.51    |
| Kingston             | 364388            | 1KIG ST 18 26.000  | 1  | N/A          | N/A       | Gas          | 278.65    |
| Raccoon Mountain     | 364401            | 1RACCOON P1 23.000 | 1  | Pumped Hydro | 429       | Pumped Hydro | 429       |
| Raccoon Mountain     | 364401            | 1RACCOON P1 23.000 | Р  | Pumped Hydro | -410      | Pumped Hydro | -410      |
| Raccoon Mountain     | 364402            | 1RACCOON P2 23.000 | 1  | Pumped Hydro | 413       | Pumped Hydro | 413       |
| Raccoon Mountain     | 364402            | 1RACCOON P2 23.000 | Р  | Pumped Hydro | -410      | Pumped Hydro | -410      |
| Raccoon Mountain     | 364403            | 1RACCOON P3 23.000 | 1  | Pumped Hydro | 413       | Pumped Hydro | 413       |
| Raccoon Mountain     | 364403            | 1RACCOON P3 23.000 | Р  | Pumped Hydro | -410      | Pumped Hydro | -410      |
| Raccoon Mountain     | 364404            | 1RACCOON P4 23.000 | 1  | Pumped Hydro | 429       | Pumped Hydro | 429       |
| Raccoon Mountain     | 364404            | 1RACCOON P4 23.000 | Р  | Pumped Hydro | -410      | Pumped Hydro | -410      |
| Apalachia            | 364421            | 1APALACH H1 13.800 | 1  | Hydro        | 41.19     | Hydro        | 41.19     |
| Apalachia            | 364422            | 1APALACH H2 13.800 | 1  | Hydro        | 41.22     | Hydro        | 41.22     |
| Blue Ridge           | 364423            | 1BLUERIDG H112.500 | 1  | Hydro        | 17.35     | Hydro        | 17.35     |
| Boone                | 364424            | 1BOONE H1 13.800   | 1  | Hydro        | 37.8      | Hydro        | 37.8      |
| Boone                | 364425            | 1BOONE H2 13.800   | 1  | Hydro        | 37.8      | Hydro        | 37.8      |
| Boone                | 364426            | 1BOONE H3 13.800   | 1  | Hydro        | 37.8      | Hydro        | 37.8      |
| Chatuge              | 364428            | 1CHATUGE H1 6.9000 | 1  | Hydro        | 13.92     | Hydro        | 13.92     |
| Chickamauga          | 364431            | 1CHICKAMG H113.800 | 1  | Hydro        | 35.8      | Hydro        | 35.8      |
|                      |                   |                    |    |              |           |              |           |

| Summer Peak 2026 & 2 | 034 Regional SER  | ΓP V3 Models       |    | 202          | 26        | 203          | 4         |
|----------------------|-------------------|--------------------|----|--------------|-----------|--------------|-----------|
| Plant                | <b>Bus Number</b> | <b>Bus Name</b>    | Id | Fuel Type    | Pmax (MW) | Fuel Type    | Pmax (MW) |
| Chickamauga          | 364432            | 1CHICKAMG H213.800 | 1  | Hydro        | 35.8      | Hydro        | 35.8      |
| Chickamauga          | 364433            | 1CHICKAMG H313.800 | 1  | Hydro        | 35.8      | Hydro        | 35.8      |
| Chickamauga          | 364434            | 1CHICKAMG H413.800 | 1  | Hydro        | 35.8      | Hydro        | 35.8      |
| Douglas              | 364435            | 1DOUGLAS H1 13.800 | 1  | Hydro        | 45.82     | Hydro        | 45.82     |
| Douglas              | 364436            | 1DOUGLAS H2 13.800 | 1  | Hydro        | 45.82     | Hydro        | 45.82     |
| Douglas              | 364437            | 1DOUGLAS H3 13.800 | 1  | Hydro        | 45.82     | Hydro        | 45.82     |
| Douglas              | 364438            | 1DOUGLAS H4 13.800 | 1  | Hydro        | 45.82     | Hydro        | 45.82     |
| Fontana              | 364439            | 1FONTANA H1 13.800 | 1  | Hydro        | 103       | Hydro        | 103       |
| Fontana              | 364440            | 1FONTANA H2 13.800 | 1  | Hydro        | 103       | Hydro        | 103       |
| Fontana              | 364441            | 1FONTANA H3 13.800 | 1  | Hydro        | 103       | Hydro        | 103       |
| Fort Loudoun         | 364442            | 1FTLOUD H1 13.800  | 1  | Hydro        | 36        | Hydro        | 36        |
| Fort Loudoun         | 364443            | 1FTLOUD H3 13.800  | 3  | Hydro        | 45.31     | Hydro        | 45.31     |
| Fort Loudoun         | 364444            | 1FTLOUD H2 13.800  | 1  | Hydro        | 36        | Hydro        | 36        |
| Fort Loudoun         | 364445            | 1FTLOUD H4 13.800  | 4  | Hydro        | 45.31     | Hydro        | 45.31     |
| Fort Patrick Henry   | 364446            | 1FT PAT H1-213.800 | 1  | Hydro        | 20.37     | Hydro        | 20.37     |
| Fort Patrick Henry   | 364446            | 1FT PAT H1-213.800 | 2  | Hydro        | 20.32     | Hydro        | 20.32     |
| Great Falls          | 364447            | 1GFALLS H1-26.6000 | 1  | Hydro        | 15.93     | Hydro        | 15.93     |
| Great Falls          | 364447            | 1GFALLS H1-26.6000 | 2  | Hydro        | 19.54     | Hydro        | 19.54     |
| Guntersville         | 364448            | 1GUNTERSV H113.800 | 1  | Hydro        | 28.81     | Hydro        | 28.81     |
| Guntersville         | 364449            | 1GUNTERSV H213.800 | 1  | Hydro        | 30.6      | Hydro        | 30.6      |
| Guntersville         | 364450            | 1GUNTERSV H313.800 | 1  | Hydro        | 29.84     | Hydro        | 29.84     |
| Guntersville         | 364451            | 1GUNTERSV H413.800 | 1  | Hydro        | 31.27     | Hydro        | 31.27     |
| Hiwassee             | 364452            | 1HIWASSEE H113.800 | 1  | Hydro        | 87.69     | Hydro        | 87.69     |
| Hiwassee             | 364453            | 1HIWASSEE H213.800 | 1  | Hydro        | 94.2      | Hydro        | 94.2      |
| Hiwassee             | 364453            | 1HIWASSEE H213.800 | Р  | Pumped Hydro | 0         | Pumped Hydro | 0         |
| Kentucky             | 364456            | 1KY HYDRO H113.800 | 1  | Hydro        | 44.6      | Hydro        | 44.6      |
| Kentucky             | 364457            | 1KY HYDRO H213.800 | 1  | Hydro        | 46.1      | Hydro        | 46.1      |
| Kentucky             | 364458            | 1KY HYDRO H313.800 | 1  | Hydro        | 45.1      | Hydro        | 45.1      |
| Kentucky             | 364459            | 1KY HYDRO H413.800 | 1  | Hydro        | 45.8      | Hydro        | 45.8      |
| Kentucky             | 364460            | 1KY HYDRO H513.800 | 1  | Hydro        | 45.3      | Hydro        | 45.3      |

| Summer Peak 2026 8 | & 2034 Regional SER | TP V3 Models       |    | 20        | )26       | 20               | )34       |
|--------------------|---------------------|--------------------|----|-----------|-----------|------------------|-----------|
| Plant              | <b>Bus Number</b>   | <b>Bus Name</b>    | Id | Fuel Type | Pmax (MW) | <b>Fuel Type</b> | Pmax (MW) |
| Melton Hill        | 364461              | 1MELTON H H113.800 | 1  | Hydro     | 39.49     | Hydro            | 39.49     |
| Melton Hill        | 364462              | 1MELTON H H213.800 | 1  | Hydro     | 39.74     | Hydro            | 39.74     |
| Norris             | 364465              | 1NORRIS H1 13.800  | 1  | Hydro     | 63.47     | Hydro            | 63.47     |
| Norris             | 364466              | 1NORRIS H2 13.800  | 1  | Hydro     | 63.47     | Hydro            | 63.47     |
| Nottely            | 364467              | 1NOTTELY H1 13.800 | 1  | Hydro     | 19.22     | Hydro            | 19.22     |
| Ocoee 1            | 364468              | 10C0EE#1H1-32.3000 | 1  | Hydro     | 4.81      | Hydro            | 4.81      |
| Ocoee 1            | 364468              | 10C0EE#1H1-32.3000 | 2  | Hydro     | 4.81      | Hydro            | 4.81      |
| Ocoee 1            | 364468              | 10C0EE#1H1-32.3000 | 3  | Hydro     | 4.81      | Hydro            | 4.81      |
| Ocoee 1            | 364469              | 10C0EE#1H4-52.3000 | 1  | Hydro     | 4.81      | Hydro            | 4.81      |
| Ocoee 1            | 364469              | 10C0EE#1H4-52.3000 | 2  | Hydro     | 4.81      | Hydro            | 4.81      |
| Ocoee 2            | 364470              | 10C0EE#2H1-26.6000 | 1  | Hydro     | 10.9      | Hydro            | 10.9      |
| Ocoee 2            | 364470              | 10C0EE#2H1-26.6000 | 2  | Hydro     | 12.59     | Hydro            | 12.59     |
| Ocoee 3            | 364471              | 10COEE #3 H113.800 | 1  | Hydro     | 29.3      | Hydro            | 29.3      |
| Pickwick           | 364472              | 1PICKWICK H113.800 | 1  | Hydro     | 44.3      | Hydro            | 44.3      |
| Pickwick           | 364473              | 1PICKWICK H213.800 | 1  | Hydro     | 42.9      | Hydro            | 42.9      |
| Pickwick           | 364474              | 1PICKWICK H313.800 | 1  | Hydro     | 42.8      | Hydro            | 42.8      |
| Pickwick           | 364475              | 1PICKWICK H413.800 | 1  | Hydro     | 43.59     | Hydro            | 43.59     |
| Pickwick           | 364476              | 1PICKWICK H513.800 | 1  | Hydro     | 43.7      | Hydro            | 43.7      |
| Pickwick           | 364477              | 1PICKWICK H613.800 | 1  | Hydro     | 43.2      | Hydro            | 43.2      |
| South Holston      | 364478              | 1SHOLSTON H113.800 | 1  | Hydro     | 44.37     | Hydro            | 44.37     |
| Tims Ford          | 364479              | 1TIMSFORD H113.800 | 1  | Hydro     | 40.05     | Hydro            | 40.05     |
| Watauga            | 364480              | 1WATAUGA H1 13.800 | 1  | Hydro     | 37.86     | Hydro            | 37.86     |
| Watauga            | 364481              | 1WATAUGA H2 13.800 | 1  | Hydro     | 32        | Hydro            | 32        |
| Watts Bar          | 364482              | 1WBHP H1 13.800    | 1  | Hydro     | 39.27     | Hydro            | 39.27     |
| Watts Bar          | 364483              | 1WBHP H2 13.800    | 1  | Hydro     | 39.27     | Hydro            | 39.27     |
| Watts Bar          | 364484              | 1WBHP H3 13.800    | 1  | Hydro     | 39.27     | Hydro            | 39.27     |
| Watts Bar          | 364485              | 1WBHP H4 13.800    | 1  | Hydro     | 39.2      | Hydro            | 39.2      |
| Watts Bar          | 364486              | 1WBHP H5 13.800    | 1  | Hydro     | 39.2      | Hydro            | 39.2      |
| Wilbur             | 364492              | 1WILBUR H1-32.3000 | 1  | Hydro     | 1.5       | Hydro            | 1.5       |
| Wilbur             | 364492              | 1WILBUR H1-32.3000 | 2  | Hydro     | 1.5       | Hydro            | 1.5       |
|                    |                     |                    |    |           |           |                  |           |



| Summer Peak 2026 & 2 | 2034 Regional SER | TP V3 Models       |    | 20        | )26       | 20        | 34        |
|----------------------|-------------------|--------------------|----|-----------|-----------|-----------|-----------|
| Plant                | <b>Bus Number</b> | <b>Bus Name</b>    | Id | Fuel Type | Pmax (MW) | Fuel Type | Pmax (MW) |
| Wilbur               | 364492            | 1WILBUR H1-32.3000 | 3  | Hydro     | 1.5       | Hydro     | 1.5       |
| Wilbur               | 364493            | 1WILBUR H4 2.3000  | 1  | Hydro     | 7.2       | Hydro     | 7.2       |
| Wilson               | 364494            | 1WILSON H1-212.000 | 1  | Hydro     | 22.5      | Hydro     | 22.5      |
| Wilson               | 364494            | 1WILSON H1-212.000 | 2  | Hydro     | 22.8      | Hydro     | 22.8      |
| Wilson               | 364495            | 1WILSON H3-412.000 | 1  | Hydro     | 23        | Hydro     | 23        |
| Wilson               | 364495            | 1WILSON H3-412.000 | 2  | Hydro     | 22.3      | Hydro     | 22.3      |
| Wilson               | 364496            | 1WILSON H5-612.000 | 1  | Hydro     | 30.6      | Hydro     | 30.6      |
| Wilson               | 364496            | 1WILSON H5-612.000 | 2  | Hydro     | 30.43     | Hydro     | 30.43     |
| Wilson               | 364497            | 1WILSON H7-812.000 | 1  | Hydro     | 29.3      | Hydro     | 29.3      |
| Wilson               | 364497            | 1WILSON H7-812.000 | 2  | Hydro     | 30.9      | Hydro     | 30.9      |
| Wilson               | 364498            | 1WILSON 9-1013.800 | 1  | Hydro     | 30        | Hydro     | 30        |
| Wilson               | 364498            | 1WILSON 9-1013.800 | 2  | Hydro     | 29.7      | Hydro     | 29.7      |
| Wilson               | 364499            | 1WILSON11-1213.800 | 1  | Hydro     | 29.8      | Hydro     | 29.8      |
| Wilson               | 364499            | 1WILSON11-1213.800 | 2  | Hydro     | 29.5      | Hydro     | 29.5      |
| Wilson               | 364500            | 1WILSON13-1413.800 | 1  | Hydro     | 29.6      | Hydro     | 29.6      |
| Wilson               | 364500            | 1WILSON13-1413.800 | 2  | Hydro     | 29.6      | Hydro     | 29.6      |
| Wilson               | 364501            | 1WILSON15-1613.800 | 1  | Hydro     | 29.23     | Hydro     | 29.23     |
| Wilson               | 364501            | 1WILSON15-1613.800 | 2  | Hydro     | 29.23     | Hydro     | 29.23     |
| Wilson               | 364502            | 1WILSON17-1813.800 | 1  | Hydro     | 29.01     | Hydro     | 29.01     |
| Wilson               | 364502            | 1WILSON17-1813.800 | 2  | Hydro     | 29.03     | Hydro     | 29.03     |
| Wilson               | 364503            | 1WILSON H19 13.800 | 1  | Hydro     | 54.97     | Hydro     | 54.97     |
| Wilson               | 364504            | 1WILSON H20 13.800 | 1  | Hydro     | 56.06     | Hydro     | 56.06     |
| Wilson               | 364505            | 1WILSON H21 13.800 | 1  | Hydro     | 54.97     | Hydro     | 54.97     |
| Cherokee             | 364511            | 1CHEROKEE H113.800 | 1  | Hydro     | 37.2      | Hydro     | 37.2      |
| Cherokee             | 364512            | 1CHEROKEE H213.800 | 2  | Hydro     | 39.83     | Hydro     | 39.83     |
| Cherokee             | 364513            | 1CHEROKEE H313.800 | 3  | Hydro     | 39.83     | Hydro     | 39.83     |
| Cherokee             | 364514            | 1CHEROKEE H413.800 | 4  | Hydro     | 36.84     | Hydro     | 36.84     |
| Nickajack            | 364521            | 1NICKAJACK 113.800 | 1  | Hydro     | 30.7      | Hydro     | 30.7      |
| Nickajack            | 364522            | 1NICKAJACK 213.800 | 1  | Hydro     | 27.31     | Hydro     | 27.31     |
| Nickajack            | 364523            | 1NICKAJACK 313.800 | 1  | Hydro     | 26.03     | Hydro     | 26.03     |



| <b>Summer Peak 2026</b> | & 2034 Regional SERTP | V3 Models          |    | 20        | )26       | 20        | 34        |
|-------------------------|-----------------------|--------------------|----|-----------|-----------|-----------|-----------|
| Plant                   | <b>Bus Number</b>     | Bus Name           | Id | Fuel Type | Pmax (MW) | Fuel Type | Pmax (MW) |
| Nickajack               | 364524                | 1NICKAJACK 413.800 | 1  | Hydro     | 26.08     | Hydro     | 26.08     |
| Barkley                 | 364601                | 1BARKLEY H1 13.800 | 1  | Hydro     | 35.5      | Hydro     | 35.5      |
| Barkley                 | 364602                | 1BARKLEY H2 13.800 | 1  | Hydro     | 35.5      | Hydro     | 35.5      |
| Barkley                 | 364603                | 1BARKLEY H3 13.800 | 1  | Hydro     | 35.5      | Hydro     | 35.5      |
| Barkley                 | 364604                | 1BARKLEY H4 13.800 | 1  | Hydro     | 35.5      | Hydro     | 35.5      |
| Center Hill             | 364605                | 1CENTHILL H113.800 | 1  | Hydro     | 52        | Hydro     | 52        |
| Center Hill             | 364606                | 1CENTHILL H213.800 | 1  | Hydro     | 52        | Hydro     | 52        |
| Center Hill             | 364607                | 1CENTHILL H313.800 | 1  | Hydro     | 52        | Hydro     | 52        |
| Cheatham                | 364608                | 1CHEATHAM H113.800 | 1  | Hydro     | 13        | Hydro     | 13        |
| Cheatham                | 364609                | 1CHEATHAM H213.800 | 1  | Hydro     | 13        | Hydro     | 13        |
| Cheatham                | 364610                | 1CHEATHAM H313.800 | 1  | Hydro     | 13        | Hydro     | 13        |
| Cordell Hull            | 364611                | 1CORDELL H1 13.800 | 1  | Hydro     | 37        | Hydro     | 37        |
| Cordell Hull            | 364612                | 1CORDELL H2 13.800 | 1  | Hydro     | 37        | Hydro     | 37        |
| Cordell Hull            | 364613                | 1CORDELL H3 13.800 | 1  | Hydro     | 37        | Hydro     | 37        |
| Dale Hollow             | 364614                | 1DALE HOL H113.800 | 1  | Hydro     | 19.9      | Hydro     | 19.9      |
| Dale Hollow             | 364615                | 1DALE HOL H213.800 | 1  | Hydro     | 19.9      | Hydro     | 19.9      |
| Dale Hollow             | 364616                | 1DALE HOL H313.800 | 1  | Hydro     | 19.9      | Hydro     | 19.9      |
| Old Hickory             | 364617                | 10LDHICKH1-213.800 | 1  | Hydro     | 28.7      | Hydro     | 28.7      |
| Old Hickory             | 364617                | 10LDHICKH1-213.800 | 2  | Hydro     | 29        | Hydro     | 29        |
| Old Hickory             | 364618                | 10LDHICKH3-413.800 | 1  | Hydro     | 29        | Hydro     | 29        |
| Old Hickory             | 364618                | 10LDHICKH3-413.800 | 2  | Hydro     | 29        | Hydro     | 29        |
| Percy Priest            | 364619                | 1PERCY PR H113.800 | 1  | Hydro     | 30        | Hydro     | 30        |
| Wolf Creek              | 364620                | 1WOLFCR H1-213.800 | 1  | Hydro     | 52        | Hydro     | 52        |
| Wolf Creek              | 364620                | 1WOLFCR H1-213.800 | 2  | Hydro     | 52        | Hydro     | 52        |
| Wolf Creek              | 364621                | 1WOLFCR H3-413.800 | 1  | Hydro     | 52        | Hydro     | 52        |
| Wolf Creek              | 364621                | 1WOLFCR H3-413.800 | 2  | Hydro     | 52        | Hydro     | 52        |
| Wolf Creek              | 364622                | 1WOLFCR H5-613.800 | 1  | Hydro     | 52        | Hydro     | 52        |
| Wolf Creek              | 364622                | 1WOLFCR H5-613.800 | 2  | Hydro     | 52        | Hydro     | 52        |
| Wheeler                 | 364650                | 1WHEELER 1-213.800 | 1  | Hydro     | 38.77     | Hydro     | 38.77     |
| Wheeler                 | 364650                | 1WHEELER 1-213.800 | 2  | Hydro     | 33.23     | Hydro     | 33.23     |
|                         |                       |                    |    |           |           |           |           |

| Summer Peak 2026 & 20 | 34 Regional SER   | ΓP V3 Models       |    | 20        | 026       | 20        | 34        |
|-----------------------|-------------------|--------------------|----|-----------|-----------|-----------|-----------|
| Plant                 | <b>Bus Number</b> | <b>Bus Name</b>    | Id | Fuel Type | Pmax (MW) | Fuel Type | Pmax (MW) |
| Wheeler               | 364651            | 1WHEELER 3-413.800 | 1  | Hydro     | 33.62     | Hydro     | 33.62     |
| Wheeler               | 364651            | 1WHEELER 3-413.800 | 2  | Hydro     | 33.43     | Hydro     | 33.43     |
| Wheeler               | 364652            | 1WHEELER 5-613.800 | 1  | Hydro     | 34.69     | Hydro     | 34.69     |
| Wheeler               | 364652            | 1WHEELER 5-613.800 | 2  | Hydro     | 34.57     | Hydro     | 34.57     |
| Wheeler               | 364653            | 1WHEELER 7-813.800 | 1  | Hydro     | 34.36     | Hydro     | 34.36     |
| Wheeler               | 364653            | 1WHEELER 7-813.800 | 2  | Hydro     | 34.46     | Hydro     | 34.46     |
| Wheeler               | 364654            | 1WHEELER 9 13.800  | 1  | Hydro     | 41.89     | Hydro     | 41.89     |
| Wheeler               | 364655            | 1WHEELER 10 13.800 | 2  | Hydro     | 41.89     | Hydro     | 41.89     |
| Wheeler               | 364656            | 1WHEELER 11 13.800 | 3  | Hydro     | 41.89     | Hydro     | 41.89     |
| Brownsville           | 364701            | 1BROWNSVL T113.800 | 1  | Gas       | 115       | Gas       | 115       |
| Brownsville           | 364702            | 1BROWNSVL T213.800 | 2  | Gas       | 115       | Gas       | 115       |
| Brownsville           | 364703            | 1BROWNSVL T313.800 | 3  | Gas       | 116.86    | Gas       | 116.86    |
| Brownsville           | 364704            | 1BROWNSVL T413.800 | 4  | Gas       | 115       | Gas       | 115       |
| Ackerman              | 364721            | 1ACKERMAN T116.000 | 1  | Gas       | 229.78    | Gas       | 229.78    |
| Ackerman              | 364722            | 1ACKERMAN T216.000 | 1  | Gas       | 229.78    | Gas       | 229.78    |
| Ackerman              | 364723            | 1ACKERMAN S116.000 | 1  | Gas       | 295.43    | Gas       | 295.43    |
| Decatur Energy Center | 364731            | 1DEC CT1 18.000    | 1  | Gas       | 181.3     | Gas       | 181.3     |
| Decatur Energy Center | 364732            | 1DEC CT2 18.000    | 1  | Gas       | 181.3     | Gas       | 181.3     |
| Decatur Energy Center | 364733            | 1DEC CT3 18.000    | 1  | Gas       | 181.3     | Gas       | 181.3     |
| Decatur Energy Center | 364734            | 1DEC STG 18.000    | 1  | Gas       | 299.9     | Gas       | 299.9     |
| Magnolia              | 364761            | 1MAGNOL T1 18.000  | 1  | Gas       | 175.71    | Gas       | 175.71    |
| Magnolia              | 364762            | 1MAGNOL T2 18.000  | 1  | Gas       | 168.48    | Gas       | 168.48    |
| Magnolia              | 364763            | 1MAGNOL T3 18.000  | 1  | Gas       | 174.68    | Gas       | 174.68    |
| Magnolia              | 364764            | 1MAGNOL S1 18.000  | 1  | Gas       | 155.04    | Gas       | 155.04    |
| Magnolia              | 364765            | 1MAGNOL S2 18.000  | 1  | Gas       | 155.04    | Gas       | 155.04    |
| Magnolia              | 364766            | 1MAGNOL S3 18.000  | 1  | Gas       | 155.04    | Gas       | 155.04    |
| Morgan Energy Center  | 364771            | 1MEC CT1 18.000    | 1  | Gas       | 176.48    | Gas       | 176.48    |
| Morgan Energy Center  | 364772            | 1MEC CT2 18.000    | 1  | Gas       | 176.48    | Gas       | 176.48    |
| Morgan Energy Center  | 364773            | 1MEC CT3 18.000    | 1  | Gas       | 176.48    | Gas       | 176.48    |
| Morgan Energy Center  | 364774            | 1MEC STG 18.000    | 1  | Gas       | 291.57    | Gas       | 291.57    |
|                       |                   |                    |    |           |           |           |           |



| Summer Peak 2026 & 2034 Regional SERTP V3 Models |                   |                    |    | 2026      |           | 2034      |           |
|--------------------------------------------------|-------------------|--------------------|----|-----------|-----------|-----------|-----------|
| Plant                                            | <b>Bus Number</b> | <b>Bus Name</b>    | Id | Fuel Type | Pmax (MW) | Fuel Type | Pmax (MW) |
| Red Hills                                        | 364780            | 1REDHILLS F120.000 | 1  | Coal      | 489       | Coal      | 0         |
| Southaven                                        | 364791            | 1S HAVEN T1 18.000 | 1  | Gas       | 168.06    | Gas       | 168.06    |
| Southaven                                        | 364792            | 1S HAVEN T2 18.000 | 3  | Gas       | 165.03    | Gas       | 165.03    |
| Southaven                                        | 364793            | 1S HAVEN T3 18.000 | 5  | Gas       | 167.06    | Gas       | 167.06    |
| Southaven                                        | 364794            | 1S HAVEN S1 13.800 | 2  | Gas       | 104.28    | Gas       | 104.28    |
| Southaven                                        | 364795            | 1S HAVEN S2 13.800 | 4  | Gas       | 104.28    | Gas       | 104.28    |
| Southaven                                        | 364796            | 1S HAVEN S3 13.800 | 6  | Gas       | 104.28    | Gas       | 104.28    |
| Caledonia                                        | 364801            | 1COGCALED T118.000 | 1  | Gas       | 180.4     | Gas       | 180.4     |
| Caledonia                                        | 364802            | 1COGCALED S113.800 | 2  | Gas       | 117.1     | Gas       | 117.1     |
| Caledonia                                        | 364803            | 1COGCALED T218.000 | 3  | Gas       | 180.4     | Gas       | 180.4     |
| Caledonia                                        | 364804            | 1COGCALED S213.800 | 4  | Gas       | 117.1     | Gas       | 117.1     |
| Caledonia                                        | 364805            | 1COGCALED T318.000 | 5  | Gas       | 180.4     | Gas       | 180.4     |
| Caledonia                                        | 364806            | 1COGCALED S313.800 | 6  | Gas       | 117.1     | Gas       | 117.1     |
| Tate & Lyle                                      | 364901            | 1TATE&L 1-1213.800 | 1  | DG        | 0         | DG        | 0         |
| Air Products & Chemicals                         | 364902            | 1AIR PRODUCT13.200 | 1  | DG        | 0         | DG        | 0         |
| East McMinnville                                 | 364904            | 1E MCMIN1-1213.090 | 1  | DG        | 20        | DG        | 0         |
| Hickory Valley                                   | 364905            | 1BED G1-11 4.1600  | 1  | DG        | 0         | DG        | 0         |
| Kyles Ford                                       | 364907            | 1KYLESF 1-114.1600 | 1  | DG        | 20        | DG        | 0         |
| North Albertville                                | 364910            | 1NALB DS#1-44.1600 | 1  | DG        | 0         | DG        | 0         |
| Weyerhaeuser                                     | 364911            | 1WEYERHSR G113.800 | 1  | Biomass   | 27.56     | Biomass   | 27.56     |
| Weyerhaeuser                                     | 364912            | 1WEYERHSR G213.800 | 2  | Biomass   | 27.57     | Biomass   | 27.57     |
| Weyerhaeuser                                     | 364913            | 1WEYERHSR G313.800 | 3  | Biomass   | 0         | Biomass   | 0         |
| Weyerhaeuser                                     | 364913            | 1WEYERHSR G313.800 | 4  | Biomass   | 0         | Biomass   | 0         |
| Windrock                                         | 364915            | 1WINDROCK WG0.6900 | 1  | Wind      | 0         | Wind      | 0         |